Human papillomavirus (HPV) E1 and E2 proteins activate genome replication. E2 also modulates viral gene expression and is involved in the segregation of viral genomes. In addition to full length E2, almost all PV share the ability to encode an E8^E2 protein, that is a fusion of E8 with the C-terminal half of E2 which mediates specific DNA-binding and dimerization. HPV E8^E2 acts as a repressor of viral gene expression and genome replication. To analyze the function of E8^E2 in vivo, we used the Mus musculus PV1 (MmuPV1)-mouse model system. Characterization of the MmuPV1 E8^E2 protein revealed that it inhibits transcription from viral promoters in the absence and presence of E1 and E2 proteins and that this is partially dependent upon the E8 domain. MmuPV1 genomes, in which the ATG start codon was disrupted (-), displayed a 10- to 25-fold increase in viral gene expression compared to wt genomes in cultured normal mouse tail keratinocytes in short-term experiments. This suggests that the function and mechanism of E8^E2 is conserved between MmuPV1 and HPVs. Surprisingly, challenge of athymic nude Foxn1 mice with MmuPV1 - genomes did not induce warts on the tail in contrast to wt MmuPV1. Furthermore, viral gene expression was completely absent at - MmuPV1 sites 20 - 22 weeks after DNA challenge on the tail or quasivirus challenge in the vaginal vault. This reveals that expression of E8^E2 is necessary to form tumors in vivo and that this is independent from the presence of T-cells. HPV encode an E8^E2 protein which acts as repressors of viral gene expression and genome replication. In cultured normal keratinocytes, E8^E2 is essential for long-term episomal maintenance of HPV31 genomes, but not for HPV16. To understand E8^E2's role in vivo, the Mus musculus PV1 (MmuPV1)-mouse model system was used. This revealed that E8^E2's function as a repressor of viral gene expression is conserved. Surprisingly, MmuPV1 E8^E2 knock out genomes did not induce warts in T-cell deficient mice. This shows for the first time that expression of E8^E2 is necessary for tumor formation in vivo independently of T cell immunity. This indicates that E8^E2 could be an interesting target for anti-viral therapy in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8103706PMC
http://dx.doi.org/10.1128/JVI.01930-20DOI Listing

Publication Analysis

Top Keywords

viral gene
24
gene expression
24
expression e8^e2
12
genome replication
12
e8^e2 protein
12
e8^e2
11
expression
9
viral
8
encode e8^e2
8
repressor viral
8

Similar Publications

Background: While epidemiological data suggest a connection between atopic dermatitis (AD) and COVID-19, the molecular mechanisms underlying this relationship remain unclear.

Objective: To investigate whether COVID-19-related CpGs may contribute to AD development and whether this association is mediated through the regulation of specific genes' expression.

Methods: We combined Mendelian randomization and transcriptome analysis for data-driven explorations.

View Article and Find Full Text PDF

Ras gene is frequently mutated in cancer. Among different subtypes of Ras gene, K-Ras mutation occurs in nearly 30 % of human cancers. K-Ras mutation, specifically K-Ras (G12D) mutation is prevalent in cancers like lung, colon and pancreatic cancer.

View Article and Find Full Text PDF

Reducing off-target expression of mRNA therapeutics and vaccines in the liver with microRNA binding sites.

Mol Ther Methods Clin Dev

March 2025

Department of Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55902, USA.

Lipid nanoparticles (LNPs) are often liver tropic, presenting challenges for LNP-delivered mRNA therapeutics intended for other tissues, as off-target expression in the liver may increase side effects and modulate immune responses. To avoid off-target expression in the liver, miR-122 binding sites have been used by others in viral and non-viral therapeutics. Here, we use a luciferase reporter system to compare different copy numbers and insertion locations of miR-122 binding sequences to restrict liver expression.

View Article and Find Full Text PDF

Background: The development and approval of novel drugs are typically time-intensive and expensive. Leveraging a computational drug repurposing framework that integrates disease-relevant genetically regulated gene expression (GReX) and large longitudinal electronic medical record (EMR) databases can expedite the repositioning of existing medications. However, validating computational predictions of the drug repurposing framework remains a challenge.

View Article and Find Full Text PDF

The intracellular pathogen response is regulated by multiple genes in . How such responses change with age is largely unknown. Thus, we investigated potential age-dependent changes in the immune response to the -specific Orsay virus .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!