Understanding the host-microbe interactions using metabolic modeling.

Microbiome

Host-Microbe metabolic Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, Nijenborgh 7, 9747, AG, Groningen, The Netherlands.

Published: January 2021

The human gut harbors an enormous number of symbiotic microbes, which is vital for human health. However, interactions within the complex microbiota community and between the microbiota and its host are challenging to elucidate, limiting development in the treatment for a variety of diseases associated with microbiota dysbiosis. Using in silico simulation methods based on flux balance analysis, those interactions can be better investigated. Flux balance analysis uses an annotated genome-scale reconstruction of a metabolic network to determine the distribution of metabolic fluxes that represent the complete metabolism of a bacterium in a certain metabolic environment such as the gut. Simulation of a set of bacterial species in a shared metabolic environment can enable the study of the effect of numerous perturbations, such as dietary changes or addition of a probiotic species in a personalized manner. This review aims to introduce to experimental biologists the possible applications of flux balance analysis in the host-microbiota interaction field and discusses its potential use to improve human health. Video abstract.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819158PMC
http://dx.doi.org/10.1186/s40168-020-00955-1DOI Listing

Publication Analysis

Top Keywords

flux balance
12
balance analysis
12
human health
8
metabolic environment
8
metabolic
5
understanding host-microbe
4
host-microbe interactions
4
interactions metabolic
4
metabolic modeling
4
modeling human
4

Similar Publications

Colorectal cancer (CRC) is a common cancer accompanied by microbiome dysbiosis. Exploration of probiotics against oncogenic microorganisms is promising for CRC treatment. Here, differential microorganisms between CRC and healthy control were analyzed.

View Article and Find Full Text PDF

Background: Adjusting thickening agent proportions in nanoemulsion gel (NG) balances its transdermal and topical delivery properties, making it more effective for dermatophytosis treatment.

Methods: Carbomer 940 and α-pinene were used as model thickening agent and antifungal, respectively. A series of α-pinene NGs (αNG1, αNG2, αNG3) containing 0.

View Article and Find Full Text PDF

The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.

View Article and Find Full Text PDF

Patterns and Drivers of Surface Energy Flux in the Alpine Meadow Ecosystem in the Qilian Mountains, Northwest China.

Plants (Basel)

January 2025

Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.

Alpine meadows are vital ecosystems on the Qinghai-Tibet Plateau, significantly contributing to water conservation and climate regulation. This study examines the energy flux patterns and their driving factors in the alpine meadows of the Qilian Mountains, focusing on how the meteorological variables of net radiation (), air temperature, vapor pressure deficit (), wind speed (), and soil water content () influence sensible heat flux () and latent heat flux (). Using the Bowen ratio energy balance method, we monitored energy changes during the growing and non-growing seasons from 2022 to 2023.

View Article and Find Full Text PDF

Biophysical impact of forest age changes on land surface temperature in China.

Sci Total Environ

January 2025

School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China.

Forest age structures have been substantially affected by natural disturbances and anthropogenic activities worldwide. Their changes can significantly influence local and nonlocal climate through both the biogeochemical and biophysical processes. However, numerous studies have focused on the biogeochemical effect of forest age changes whereas the biophysical effect has received far less attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!