Directed self-assembly (DSA) of block copolymer (BCP) thin films is of particular interest in nanoscience and nanotechnology due to its superior ability to form various well-aligned nanopatterns. Herein, nanoscratch-DSA is introduced as a simple and scalable DSA strategy allowing highly aligned BCP nanopatterns over a large area. A gentle scratching on the target substrate with a commercial diamond lapping film can form uniaxially aligned nanoscratches. As applied in BCP thin films, the nanoscratch effectively guides the self-assembly of overlying BCPs and provides highly aligned nanopatterns along the direction of the nanoscratch. The nanoscratch-DSA is not material-specific, allowing more versatile nanofabrication for various functional nanomaterials. In addition, we demonstrate that the nanoscratch-DSA can be utilized as a direction-controllable and area-selective nanofabrication method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c19665 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!