Metal-organic frameworks functionalized smart textiles for adsorptive removal of hazardous aromatic pollutants from ambient air.

J Hazard Mater

SMITA Research Lab, Department of Textile and Fibre Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India. Electronic address:

Published: June 2021

Organic pollutants, with their increasing concentrations in the ambient air, are posing a severe threat to human health. Metal-organic frameworks (MOFs), due to their active functionalities and porous nature, have emerged as potential materials for the capture of organic pollutants and cleaning of the environment/air. In this work, the functionalization of cotton fabric is reported by the in-situ growth of zeolitic imidazolate framework (ZIF-8 and ZIF-67) MOFs on carboxymethylated cotton (CM Cotton) by employing a rapid and eco-friendly approach. The physicochemical characterization of the MOF functionalized fabrics (ZIF-8@CM Cotton and ZIF-67@CM Cotton) revealed uniform and wash durable attachment of porous ZIF nanocrystals on the surface of the fabric. These ZIF functionalized fabrics possessed high surface area and have been observed to adsorb significantly high concentrations of organic pollutants such as aniline, benzene, and styrene from ambient air. Interestingly these fabrics could be regenerated and reused repeatedly without any deterioration in their adsorption capacity. The negative and low binding energies calculated by DFT confirmed the physisorption of the aromatic pollutants on the surface of MOF functionalized fabrics. Such fabrics have a huge potential as protective textiles, anti-odor clothing, air purification filters, and related products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125056DOI Listing

Publication Analysis

Top Keywords

ambient air
12
organic pollutants
12
functionalized fabrics
12
metal-organic frameworks
8
aromatic pollutants
8
mof functionalized
8
pollutants
5
cotton
5
fabrics
5
functionalized
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!