Acute stress drives global repression through two independent RNA polymerase II stalling events in Saccharomyces.

Cell Rep

Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA. Electronic address:

Published: January 2021

AI Article Synopsis

  • In multicellular eukaryotes, RNA polymerase II typically pauses shortly after starting transcription, a process not seen in budding yeast.
  • Researchers found that yeast exhibits two distinct transcriptional stall sites when exposed to environmental changes, like peroxide stress.
  • The first stall happens before promoter clearance, and the second occurs at the +2 nucleosome, suggesting a coordinated downregulation of genes in response to stress.

Article Abstract

In multicellular eukaryotes, RNA polymerase (Pol) II pauses transcription ~30-50 bp after initiation. While the budding yeast Saccharomyces has its transcription mechanisms mostly conserved with other eukaryotes, it appears to lack this fundamental promoter-proximal pausing. However, we now report that nearly all yeast genes, including constitutive and inducible genes, manifest two distinct transcriptional stall sites that are brought on by acute environmental signaling (e.g., peroxide stress). Pol II first stalls at the pre-initiation stage before promoter clearance, but after DNA melting and factor acquisition, and may involve inhibited dephosphorylation. The second stall occurs at the +2 nucleosome. It acquires most, but not all, elongation factor interactions. Its regulation may include Bur1/Spt4/5. Our results suggest that a double Pol II stall is a mechanism to downregulate essentially all genes in concert.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7879390PMC
http://dx.doi.org/10.1016/j.celrep.2020.108640DOI Listing

Publication Analysis

Top Keywords

rna polymerase
8
acute stress
4
stress drives
4
drives global
4
global repression
4
repression independent
4
independent rna
4
polymerase stalling
4
stalling events
4
events saccharomyces
4

Similar Publications

Protocol for detecting eDNA in ecological rare fish using RPA-CRISPR-Cas12a technology.

STAR Protoc

January 2025

School of Public Health, Chongqing Medical University, Chongqing 400016, China; Chongqing Miankai Biotechnology Research Institute Co., Ltd., Chongqing 400025, China. Electronic address:

The recombinase polymerase amplification (RPA)-CRISPR-Cas12a-FQ system enables sensitive detection of environmental DNA (eDNA) in rare fish species. Here, we present a protocol for eDNA amplification and Cas12a for target recognition using RPA. We describe steps for identifying a target site, synthesis and purification of CRISPR RNA (crRNA), and RPA isothermal amplification.

View Article and Find Full Text PDF

Protocol for the purification of the plastid-encoded RNA polymerase from transplastomic tobacco plants.

STAR Protoc

January 2025

National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

The plastid-encoded RNA polymerase (PEP) plays an essential role in the transcription of the chloroplast genome. Here, we present a strategy to purify the transcriptionally active protein complex from transplastomic tobacco (Nicotiana tabacum) lines in which one of the PEP core subunits is fused to an epitope tag. We describe experimental procedures for designing transformation constructs for PEP purification, selection, and analysis of transplastomic tobacco plants.

View Article and Find Full Text PDF

Background: The insulin-like growth factor 2 (IGF2) and H19 are overexpressed in hepatocellular carcinoma (HCC). IGF2-derived miR-483-5p is implicated in the development of cancers. Here, we investigated the involvement of miR-483-5p in IGF2 and H19 overexpression regulation and its role in HCC.

View Article and Find Full Text PDF

Promoted read-through and mutation against pseudouridine-CMC by an evolved reverse transcriptase.

Commun Biol

January 2025

Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, MA, USA.

Pseudouridine (Ψ) is an abundant RNA chemical modification that plays critical biological functions. Current Ψ detection methods are limited in identifying Ψs at base-resolution in U-rich sequence contexts, where Ψ occurs frequently. Here we report "Mut-Ψ-seq" that utilizes the classic N-cyclohexyl N'-(2-morpholinoethyl)carbodiimide (CMC) agent and an evolved reverse transcriptase ("RT-1306") for Ψ mapping at base-resolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!