A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Modeling Thrombus Shell: Linking Adhesion Receptor Properties and Macroscopic Dynamics. | LitMetric

Modeling Thrombus Shell: Linking Adhesion Receptor Properties and Macroscopic Dynamics.

Biophys J

Center for Theoretical Problems of Physico-chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia; Dmitry Rogachev National Medical Research Centre of Pediatric Hematology, Oncology and Immunology, Moscow, Russia; Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia. Electronic address:

Published: January 2021

Damage to arterial vessel walls leads to the formation of platelet aggregate, which acts as a physical obstacle for bleeding. An arterial thrombus is heterogeneous; it has a dense inner part (core) and an unstable outer part (shell). The thrombus shell is very dynamic, being composed of loosely connected discoid platelets. The mechanisms underlying the observed mobility of the shell and its (patho)physiological implications are unclear. To investigate arterial thrombus mechanics, we developed a novel, to our knowledge, two-dimensional particle-based computational model of microvessel thrombosis. The model considers two types of interplatelet interactions: primary reversible (glycoprotein Ib (GPIb)-mediated) and stronger integrin-mediated interaction, which intensifies with platelet activation. At high shear rates, the former interaction leads to adhesion, and the latter is primarily responsible for stable platelet aggregation. Using a stochastic model of GPIb-mediated interaction, we initially reproduced experimental curves that characterize individual platelet interactions with a von Willebrand factor-coated surface. The addition of the second stabilizing interaction results in thrombus formation. The comparison of thrombus dynamics with experimental data allowed us to estimate the magnitude of critical interplatelet forces in the thrombus shell and the characteristic time of platelet activation. The model predicts moderate dependence of maximal thrombus height on the injury size in the absence of thrombin activity. We demonstrate that the developed stochastic model reproduces the observed highly dynamic behavior of the thrombus shell. The presence of primary stochastic interaction between platelets leads to the properties of thrombus consistent with in vivo findings; it does not grow upstream of the injury site and covers the whole injury from the first seconds of the formation. А simplified model, in which GPIb-mediated interaction is deterministic, does not reproduce these features. Thus, the stochasticity of platelet interactions is critical for thrombus plasticity, suggesting that interaction via a small number of bonds drives the dynamics of arterial thrombus shell.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7840445PMC
http://dx.doi.org/10.1016/j.bpj.2020.10.049DOI Listing

Publication Analysis

Top Keywords

thrombus shell
20
arterial thrombus
12
thrombus
11
platelet activation
8
stochastic model
8
model gpib-mediated
8
gpib-mediated interaction
8
platelet interactions
8
shell
7
interaction
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!