Uranium contamination of soils and groundwater in the United States represents a significant health risk and will require multiple remediation approaches. Microbial phosphatase activity coupled to the addition of an organic P source has recently been studied as a remediation strategy that provides an extended release of inorganic P (Pi) into U-contaminated sites, resulting in the precipitation of -autunite minerals. Previous laboratory- and field-based biomineralization studies have investigated environments with relatively high U concentrations (>20 μM). However, most contaminated sites have much lower U concentrations (<2 μM). The Environmental Protection Agency (EPA) limit for U in drinking water is 0.126 μM. Reaching this regulatory limit becomes challenging as U concentrations approach autunite solubility. We studied the precipitation of U(VI)-phosphate minerals by an environmental isolate of sp. (strain OR37) from an Oak Ridge, Tennessee, U-contaminated site. Abiotic U(VI) solubility experiments reveal that U(VI)-phosphate minerals do not form in the presence of excess Pi (500 μM) when U(VI) concentrations are <1 μM and pH is <5. When OR37 cells are reacted under the same conditions with Pi or glycerol-2-phosphate, U(VI)-phosphate mineral formation was observed, along with the formation of intracellular polyphosphate granules. These results show that bacteria provide supersaturated microenvironments needed for U(VI)-phosphate mineralization while hydrolyzing organic P sources. This provides a pathway to lower U concentrations to below EPA limits for drinking water.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.0c05437DOI Listing

Publication Analysis

Top Keywords

influence uranium
4
uranium concentration
4
concentration u-phosphate
4
u-phosphate biomineralization
4
biomineralization or37
4
or37 uranium
4
uranium contamination
4
contamination soils
4
soils groundwater
4
groundwater united
4

Similar Publications

A strategically designed ternary nanohybrid (TNS-PDA/CNT), consisting of titanate nanosheet (TNS) and polydopamine-modified multiwalled carbon nanotube (PDA/CNT composite), was synthesized by the facile hydrothermal method and wet impregnation method for removal of U(VI) from aqueous solution and were characterized by transmission electron microscopy (TEM), scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), Raman spectroscopy, Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). TNSs were introduced into the PDA/CNT composite, which effectively averted the agglomeration of the CNT and further exposed more adsorption sites. PDA thin layer exposing more active sites was conducive to enhance adsorption capacity and kinetic.

View Article and Find Full Text PDF

Effective uranium (U) capture is required for the remediation of contaminated solutes associated with the nuclear fuel cycle, including fuel reprocessing effluents, decommissioning, or nuclear accident cleanup. Here, interactions between uranyl cations (UO ) and a Mg-Al layered double hydroxide (LDH) were investigated using two types of uranyl-bearing LDH colloids. The first (ULDH) was synthesized by coprecipitation with 10% of Mg substituted by UO .

View Article and Find Full Text PDF

Extracellular electron transfer-dependent bioremediation of uranium-contaminated groundwater: Advancements and challenges.

Water Res

December 2024

State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; State Key Laboratory of Urban Water Resource and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China. Electronic address:

Efficient and sustainable remediation of uranium-contaminated groundwater is critical for groundwater safety and the sustainable development of nuclear energy, particularly in the context of global carbon neutrality goals. This review explores the potential of microbial reduction processes that utilize extracellular electron transfer (EET) to convert soluble uranium (U(VI)) into its insoluble form (U(IV)), presenting a promising approach to groundwater remediation. The review first outlines the key processes and factors influencing the effectiveness of dissimilatory metal-reducing bacteria (DMRB), such as Geobacter and Shewanella, during uranium bioremediation and recovery.

View Article and Find Full Text PDF

Trophic magnification rates of eighteen trace elements in freshwater food webs.

Sci Total Environ

December 2024

Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan S7N 5B3, Canada; School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada. Electronic address:

Trace elements play diverse roles in animal physiology ranging from essential micronutrients to potent toxicants. Despite animals accumulating many trace elements through their diets, relationships between trophic positions and biological concentrations of most trace elements remain poorly described. We report trophic transfer rates of Al, As, Ba, Cd, Co, Cu, Fe, Hg, Mn, Ni, Pb, Se, Sr, Ti, Tl, U, V, and Zn from 31 freshwaters located in distinct biogeographic regions.

View Article and Find Full Text PDF
Article Synopsis
  • Uranium, particularly in its uranyl ion form, is a toxic substance that easily contaminates the environment and poses health risks to humans.
  • A new detection system based on a specially designed DNA hairpin utilizes a self-hybridization chain reaction (SHCR) to identify uranyl ions with high sensitivity and a detection limit of 0.017 nM.
  • This system simplifies the detection process by requiring only one DNA hairpin instead of two, making it easier to implement and adaptable for identifying other non-nucleic acid targets by altering the recognition module.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!