A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis. | LitMetric

High-spatiotemporal-resolution transcriptomes provide insights into fruit development and ripening in Citrus sinensis.

Plant Biotechnol J

Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China.

Published: July 2021

Citrus fruit has a unique structure with soft leathery peel and pulp containing vascular bundles and several segments with many juice sacs. The function and morphology of each fruit tissue are different. Therefore, analysis at the organ-wide or mixed-tissue level inevitably obscures many tissue-specific phenomena. High-throughput RNA sequencing was used to profile Citrus sinensis fruit development based on four fruit tissue types and six development stages from young fruits to ripe fruits. Using a coexpression network analysis, modules of coexpressed genes and hub genes of tissue-specific networks were identified. Of particular, importance is the discovery of the regulatory network of phytohormones during citrus fruit development and ripening. A model was proposed to illustrate how ABF2 mediates the ABA signalling involved in sucrose transport, chlorophyll degradation, auxin homoeostasis, carotenoid and ABA biosynthesis, and cell wall metabolism during citrus fruit development. Moreover, we depicted the detailed spatiotemporal expression patterns of the genes involved in sucrose and citric acid metabolism in citrus fruit and identified several key genes that may play crucial roles in sucrose and citric acid accumulation in the juice sac, such as SWEET15 and CsPH8. The high spatial and temporal resolution of our data provides important insights into the molecular networks underlying citrus fruit development and ripening.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313135PMC
http://dx.doi.org/10.1111/pbi.13549DOI Listing

Publication Analysis

Top Keywords

fruit development
20
citrus fruit
20
development ripening
12
fruit
9
citrus sinensis
8
fruit tissue
8
involved sucrose
8
metabolism citrus
8
sucrose citric
8
citric acid
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!