Background/objectives: The physiological mechanisms underlying the pain-modulatory effects of clinical neurostimulation therapies, such as spinal cord stimulation (SCS) and dorsal root ganglion stimulation (DRGS), are only partially understood. In this pilot prospective study, we used patient-reported outcomes (PROs) and quantitative sensory testing (QST) to investigate the physiological effects and possible mechanisms of action of SCS and DRGS therapies.

Materials And Methods: We tested 16 chronic pain patients selected for SCS and DRGS therapy, before and after treatment. PROs included pain intensity, pain-related symptoms (e.g., pain interference, pain coping, sleep interference) and disability, and general health status. QST included assessments of vibration detection theshold (VDT), pressure pain threshold (PPT) and tolerance (PPToL), temporal summation (TS), and conditioned pain modulation (CPM), at the most painful site.

Results: Following treatment, all participants reported significant improvements in PROs (e.g., reduced pain intensity [p < 0.001], pain-related functional impairment [or pain interference] and disability [p = 0.001 for both]; better pain coping [p = 0.03], sleep [p = 0.002]), and overall health [p = 0.005]). QST showed a significant treatment-induced increase in PPT (p = 0.002) and PPToL (p = 0.011), and a significant reduction in TS (p = 0.033) at the most painful site, but showed no effects on VDT and CPM. We detected possible associations between a few QST measures and a few PROs. Notably, higher TS was associated with increased pain interference scores at pre-treatment (r = 0.772, p = 0.009), and a reduction in TS was associated with the reduction in pain interference (r = 0.669, p = 0.034) and pain disability (r = 0.690, p = 0.027) scores with treatment.

Conclusions: Our preliminary findings suggest significant clinical and therapeutic benefits associated with SCS and DRGS therapies, and the possible ability of these therapies to modulate pain processing within the central nervous system. Replication of our pilot findings in future, larger studies is necessary to characterize the physiological mechanisms of SCS and DRGS therapies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ner.13329DOI Listing

Publication Analysis

Top Keywords

quantitative sensory
8
sensory testing
8
spinal cord
8
dorsal root
8
root ganglion
8
ganglion stimulation
8
pain
8
chronic pain
8
pain patients
8
scs drgs
8

Similar Publications

Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.

View Article and Find Full Text PDF

Do female and male chests feel the same? A comprehensive quantitative sensory analysis.

J Plast Reconstr Aesthet Surg

November 2024

Division of Plastic and Reconstructive Surgery, Department of Surgery, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, USA. Electronic address:

Introduction: There is growing interest in understanding chest sensory function due to the significant morbidity associated with impaired sensation following nerve injury. While the baseline quantitative sensory and pain thresholds in female and male patients have been studied in various other anatomic areas, there is little knowledge on quantitative sensation at the chest as well as the presence of possible gender differences. Therefore, this study aimed to conduct a comprehensive quantitative sensory analysis to determine if female and male chests feel the same.

View Article and Find Full Text PDF

: This study investigates the relationship between lower limb strength and postural stability in single-leg stance using the Balance Master system. : The research involved 64 participants divided into sedentary and physically active groups based on metabolic equivalents of task (METs) values, normal weight, overweight, and obese according to body composition. Postural control was evaluated using the Sensory Organization Test.

View Article and Find Full Text PDF

Objective: Among patients with acute stroke, we aimed to identify those who will later develop central post-stroke pain (CPSP) versus those who will not (non-pain sensory stroke [NPSS]) by assessing potential differences in somatosensory profile patterns and evaluating their potential as predictors of CPSP.

Methods: In a prospective longitudinal study on 75 acute stroke patients with somatosensory symptoms, we performed quantitative somatosensory testing (QST) in the acute/subacute phase (within 10 days) and on follow-up visits for 12 months. Based on previous QST studies, we hypothesized that QST values of cold detection threshold (CDT) and dynamic mechanical allodynia (DMA) would differ between CPSP and NPSS patients before the onset of pain.

View Article and Find Full Text PDF

Small fiber pathology in fibromyalgia syndrome.

Pain Rep

February 2025

Department of Neurology, University Hospital Würzburg, Würzburg, Germany.

About 50% of women with fibromyalgia syndrome have reduced skin innervation. This finding is consistent in patient cohorts from different regions of the world. Small fiber function may also be affected, as shown by various studies using different methods, such as quantitative sensory testing or special small fiber neurophysiology such as C-fiber microneurography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!