Purpose: Evaluate utility of dual energy CT iodine material density images to identify preoperatively nodal positivity in pancreatic cancer patients who underwent neoadjuvant therapy.
Methods: This IRB approved retrospective study evaluated 62 patients between 2012 and 2016 with proven pancreatic ductal adenocarcinoma, who underwent neoadjuvant therapy, tumor resection and both baseline and preoperative assessment with pancreatic multiphasic rapid switching dual energy CT. Three radiologists in consensus identified on imaging nodes > 0.5 cm in short axis, evaluated nodal morphology, size and on each phase density in HU, and concentrations on iodine material density images normalized to the aorta.
Results: Of 62 patients, 33 were N0, 20 N1, and 9 N2. Total of 145 lymph nodes were evaluated, with average number of nodes per anatomic site ranging from 1.3 (body tumors) to 5 (uncinate) versus average of 24 and 30 nodes recovered respectively at surgery. Most (N = 44) were pancreatic head tumors. For all patients, regardless of site of primary tumor, the minimum measured iodine value of all of a patient's measured nodes taken as a group on preoperative studies, as normalized to the aorta, was significant at P = 0.041 value in differentiating N0 from N1/2 and ROC analysis showed an AUC of 0.67. With a cutoff of 0.2857, sensitivity was 0.78 and specificity was 0.58, with values < 0.2857 indicative of N1/2. Node morphology and changes in nodal size weren't statistically significant.
Conclusion: The dual energy based minimum normalized iodine value of all nodes in the surgical field on preoperative studies has modest utility in differentiating N0 from N1/2, and generally outperformed conventional features for identifying nodal metastases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00261-020-02917-5 | DOI Listing |
J Assoc Nurses AIDS Care
January 2025
Hamidreza Rashidi, MD, is a Researcher, HIV/STI Surveillance Research Center, WHO Collaborating Center for HIV Surveillance, Kerman University of Medical Sciences, Kerman, Iran.
Chronic diseases such as osteoporosis and low bone mineral density (BMD) are significant public health concerns for people living with HIV (PLWH), especially with the increased life expectancy because of antiretroviral therapy (ART). This study evaluated the prevalence and associated factors of low BMD among 94 PLWH in Kerman, Iran, from September 2021 to February 2022. Using dual-energy X-ray absorptiometry, BMD was measured, with low BMD defined by specific T-scores and Z-scores.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States.
Simultaneously hydrophilic and oleophobic surfaces offer substantial advantages for applications such as antifogging, self-cleaning, and oil-water separation. It remains challenging to engineer such surfaces without requiring polar functional groups. This study introduces HFIL, a novel ionic liquid (IL) coating that achieves simultaneous hydrophilic and oleophobic properties via a one-step dip-coating process without relying on polar functional groups.
View Article and Find Full Text PDFSmall
January 2025
College of Resources, Hunan Agricultural University, Changsha, 410128, China.
The exploration of photocatalytic materials with efficient charge separation has always been a prominent area of research in photocatalysis. In the preceding years, the strategy of constructing donor-acceptor (D-A) structured materials has gradually been developed in photocatalytic systems, becoming a new research crossroads and attracting extensive interdisciplinary focus. Polymeric carbon nitride (PCN) has gradually been recognized as the primary photocatalytic material for constructing D-A structures due to its attractive exceptional physicochemical stability, electronic band structure, and cost-effectiveness.
View Article and Find Full Text PDFSmall
January 2025
Institute of Nano Science and Technology, Sector-81, Knowledge city, S.A.S. Nagar, Punjab, 140306, India.
Oxygen electrocatalysis plays a pivotal role in energy conversion and storage technologies. The precise identification of active sites for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial for developing an efficient bifunctional electrocatalyst. However, this remains a challenging endeavor.
View Article and Find Full Text PDFNat Commun
January 2025
Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, China.
Physisorption presents a promising alternative to cryogenic distillation for capturing the most potent greenhouse gas, SF, but existing adsorbents face challenges in meeting diverse chemical and engineering concerns. Herein, with insights into in-pore chemistry and industrial process design, we report a systematic investigation that constructed two low-cost composites pellets (Al(fum)@2%HPC and Al(fum)@5%Kaolin) coupled with an innovative two-stage Vacuum Temperature Swing Adsorption (VTSA) process for the ultra-efficient recovery of low-concentration SF from N. Record-high selectivities (> 2×10) and SF dynamic capacities (~ 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!