Summary: Both dynamic correlations in protein sidechain motions during molecular dynamics (MD) simulations and evolutionary correlations in multiple sequence alignments (MSAs) of homologous proteins may reveal functionally important residues. We developed the R package Bios2cor that provides a unique framework to investigate and, possibly, integrate both analyses. Bios2cor starts with an MSA or an MD trajectory and computes correlation/covariation scores between positions in the MSA or between sidechain dihedral angles or rotamers in the MD trajectory. In addition, Bios2cor provides a variety of tools for the analysis, the visualization and the interpretation of the data.

Availability And Implementation: The R package Bios2cor is available from the Comprehensive R Archive Network, at https://CRAN.R-project.org/package=Bios2cor.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bioinformatics/btab002DOI Listing

Publication Analysis

Top Keywords

evolutionary correlations
8
functionally residues
8
package bios2cor
8
bios2cor
5
bios2cor package
4
package integrating
4
integrating dynamic
4
dynamic evolutionary
4
correlations identify
4
identify functionally
4

Similar Publications

Genomic Epidemiology of Strains That Caused the Fire Blight Outbreak in Korea.

Plant Dis

January 2025

50 Yonsei-ro, Seodaemun-guSeoul, Korea (the Republic of), 03722;

Fire blight, a devastating bacterial disease affecting rosaceous plants such as apples and pears, is caused by . The disease, known for its rapid spread and destructive potential, can lead to severe symptoms and often result in the death of infected plants. In Korea, the observation of was first recorded in 2015, and subsequent dissemination has been noted across the peninsula.

View Article and Find Full Text PDF

Deciphering the biosynthetic pathway of triterpene saponins in Prunella vulgaris.

Plant J

January 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.

The traditional Chinese medicinal plant Prunella vulgaris contains numerous triterpene saponin metabolites, notably ursolic and oleanolic acid saponins, which have significant pharmacological values. Despite their importance, the genes responsible for synthesizing these triterpene saponins in P. vulgaris remain unidentified.

View Article and Find Full Text PDF

Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.

View Article and Find Full Text PDF

Background And Aims: Genome size varies by orders of magnitude across land plants, and the factors driving evolutionary increases and decreases in genome size vary across lineages. Bryophytes have the smallest genomes relative to other land plants and there is growing evidence for frequent whole genome duplication (WGD) across the lineage. However, the broad patterns of genome size, chromosome number, and WGD have yet to be characterized across bryophytes in a phylogenetic context.

View Article and Find Full Text PDF

The strong correlation between reproductive life cycle type and chromosome numbers in green plants has been a long-standing mystery in evolutionary biology. Within green plants, the derived condition of heterosporous reproduction has emerged from the ancestral condition of homospory in disparate locations on the phylogenetic tree at least 11 times, of which three lineages are extant. In all green plant lineages where heterospory has emerged, there has been a significant downsizing in chromosome numbers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!