Oxidative stress-mediated excessive apoptosis and senescence of chondrocytes are the main pathological alterations in the osteoarthritis (OA) development. The protective effects of theaflavin (TF), a common group of polyphenols in black tea, against many degenerative diseases by attenuating oxidative stress are well reported. Nevertheless, its role in the OA treatment is still scantily understood. In the current research, by applying enzyme-linked immunosorbent assay (ELISA) kits and immunofluorescent staining, TF treatment was found to inhibit tert-Butyl hydroperoxide (TBHP)-induced imbalance of anabolism and catabolism in primary mouse chondrocytes. Then, according to western blot, live-dead staining, and SA-β-gal staining, the dramatically increased level of apoptosis and senescence of chondrocytes in response to TBHP was also found to be reduced by TF administration. With regard to upstream signaling investigation, the in vitro molecular binding analysis indicated that the beneficial effects of TF might be related to the regulation of the Keap1/Nrf2/HO-1 axis. Furthermore, the Silencing of Nrf2 resulted in the abolishment of the anti-apoptosis and anti-senescence effects of TF. In addition, the oral administration of TF was demonstrated to ameliorate osteoarthritis development in a surgically induced mouse OA model. Taken together, these results suggest that TF might be a promising therapeutic option for the treatment of OA.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0fo02038aDOI Listing

Publication Analysis

Top Keywords

apoptosis senescence
12
senescence chondrocytes
8
osteoarthritis development
8
theaflavin protects
4
chondrocytes
4
protects chondrocytes
4
chondrocytes apoptosis
4
senescence regulating
4
regulating nrf2
4
nrf2 ameliorates
4

Similar Publications

Platelet-rich plasma alleviates skin photoaging by activating autophagy and inhibiting inflammasome formation.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Department of Dermatology, Dongshan Hospital, Guofengyuan Building, Xuezi Avenue, Meijiang District, Meizhou, 514011, Guangdong, China.

Platelet-rich plasma (PRP) holds promising prospects for the treatment of skin photoaging. This study aims to unravel the mechanism underlying PRP's anti-photoaging properties. Partial skin of rats was irradiated with ultraviolet (UV) and injected with PRP, and the skin appearance, pathological state, and aging conditions were determined.

View Article and Find Full Text PDF

Equol Alleviates the In Vitro Aging-Induced Disruption of Porcine Oocytes.

Reprod Domest Anim

January 2025

College of Animal Science & Technology, Guangxi University, Nanning, Guangxi, China.

Oocyte quality is crucial for determining the subsequent embryo developmental capacity and reproductive outcomes. However, aging is detrimental to oocyte quality. Previous studies have demonstrated that soy isoflavones have positive effects on the reproductive performance of female pigs.

View Article and Find Full Text PDF

Accumulating evidence suggests that genetic and epigenetic biomarkers hold potential for enhancing the early detection and monitoring of breast cancer (BC). Epigenetic alterations of the Homeobox A2 (HOXA2) gene have recently garnered significant attention in the clinical management of various malignancies. However, the precise role of HOXA2 in breast tumorigenesis has remained elusive.

View Article and Find Full Text PDF

Spermatogenesis is finely regulated by histone methylation, which is crucial for regulating gene expression and chromatin remodeling. Functional studies have demonstrated that the histone lysine methyltransferases (KMTs) SETD1B, CFP1, SETDB1, G9A, and SETD2 play pivotal roles in spermatogenesis through establishing the key histone methylation marks, H3K4me3, H3K9me2, H3K9me3, and H3K36me3, respectively. This study aimed to evaluate the spatiotemporal expression of these KMTs and methylation marks as well as senescence-associated β-galactosidase (β-GAL), transcriptional activity, and apoptosis rates in mouse testes during biological aging.

View Article and Find Full Text PDF

Fibroblasts play a crucial role in diabetic wound healing, and their senescence is the cause of delayed wound repair. It was reported that fibroblasts can secrete exosomes that can mediate a vital role in diabetic complications. Our purpose is to examine the biological function of high glucose (HG)-induced senescent fibroblasts from the perspective of exosomes and reveal the mechanism at cellular and animal levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!