Defect states at surfaces and grain boundaries as well as poor anchoring of perovskite grains hinder the charge transport ability by acting as nonradiative recombination centers, thus resulting in undesirable phenomena such as low efficiency, poor stability, and hysteresis in perovskite solar cells (PSCs). Herein, a linear dicarboxylic acid-based passivation molecule, namely, glutaric acid (GA), is introduced by a facile antisolvent additive engineering (AAE) strategy to concurrently improve the efficiency and long-term stability of the ensuing PSCs. Thanks to the two-sided carboxyl (-COOH) groups, the strong interactions between GA and under-coordinated Pb sites induce the crystal growth, improve the electronic properties, and minimize the charge recombination. Ultimately, champion-stabilized efficiency approaching 22% is achieved with negligible hysteresis for GA-assisted devices. In addition to the enhanced moisture stability of the devices, considerable operational stability is achieved after 2400 h of aging under continuous illumination at maximum power point (MPP) tracking.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c03566DOI Listing

Publication Analysis

Top Keywords

perovskite solar
8
solar cells
8
efficient stable
4
perovskite
4
stable perovskite
4
cells enabled
4
enabled dicarboxylic
4
dicarboxylic acid-supported
4
acid-supported perovskite
4
perovskite crystallization
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!