The cytotoxic and genotoxic effects of commercial endodontic sealers (AH Plus, Sealer 26 and Endomethasone N) incorporated with nanostructured silver vanadate decorated with silver nanoparticles (AgVO - at concentrations 2.5, 5, and 10%) on human gingival fibroblast (HGF), and the silver (Ag ) and vanadium (V /V ) ions release were evaluated. Cytotoxicity, cell death, and genotoxicity tests were carried out with extract samples of 24-hr and 7-days. The release of Ag and V /V was evaluated. Cytotoxicity in HGF was caused by AH Plus (AP) with 5 and 10% of AgVO (83.84 and 67.49% cell viability, respectively) with 24-hr extract (p < 0.05), as well as all concentrations of AP with 7-days extract (p < 0.05 -AP 0% = 73.17%; AP 2.5% = 75.07%; AP 5% = 70.62%; AP 10% = 68.46% cell viability). The commercial sealers Sealer 26 (S26) and Endomethasone N (EN) were cytotoxic (p < 0.05 - S26 0% = 34.81%; EN 0% = 20.99% cell viability with 7-days extract). AP 10% with 7-days extract induced 32% apoptotic cells in HGF (p < 0.05). Genotoxic effect was not observed. The AP groups released more Ag , while S26 and EN released more V /V in 24 hr. The Ag can be cytotoxic. In conclusion, the cytotoxicity caused to HGF can be attributed by the commercial sealers and enhanced by incorporation of AgVO , was not observed genotoxic effect, and apoptosis was induced only by AH Plus 10% 7-days extract. Ag can influence cell viability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.34798DOI Listing

Publication Analysis

Top Keywords

cytotoxic genotoxic
8
genotoxic effects
8
human gingival
8
gingival fibroblast
8
ions release
8
endodontic sealers
8
incorporated nanostructured
8
nanostructured silver
8
silver vanadate
8
release evaluated
8

Similar Publications

The highly valued oil of Mill. (Rosaceae), widely used in high perfumery, cosmetics, and other spheres of human life, obliges us to know and study the safety profile of the product obtained from the water-steam distillation of fresh rose petals. The genotoxicity of the essential oil (EsO) has not been thoroughly studied despite its wide range of applications.

View Article and Find Full Text PDF

We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.

View Article and Find Full Text PDF

Yttrium oxide nanoparticles (YONPs) have emerged as a promising avenue for cancer therapy, primarily due to their distinctive properties that facilitate selective targeting of cancer cells. Despite their potential, the therapeutic effects of YONPs on human epidermoid skin cancer remain largely unexplored. This study was thus conducted to investigate the impact of YONPs on both human skin normal and cancer cells, with an emphasis on assessing their cytotoxicity, genotoxicity, and the mechanisms underlying these effects.

View Article and Find Full Text PDF

Toxicity assessment of DMSO extracts of environmental aged beached plastics using human cell lines.

Ecotoxicol Environ Saf

January 2025

Univ. Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, Pessac F-33600, France. Electronic address:

Plastic products contain complex mixtures of chemical compounds that are incorporated into polymers to improve material properties. Besides the intentional chemical additives, other compounds including residual monomers and non-intentionnaly added substances (NIAS) as well as sorbed pollutants are usually also present in aged plastic. Since most of these substances are only loosely bound to the polymer via non-covalently interactions, i.

View Article and Find Full Text PDF

Amide-amine (PAMAM) dendrimers are biodegradable, non-immunogenic, genotoxic, and biocompatibible, which make them excellent materials for biological applications. In order to reduce the cytotoxicity of the designed branched molecules, a four-armed branched nucleus (B4) of PAMAM dendrimers as hyperbranched molecules was fused with polyhexamethylene biguanide (PHMB) (A2); hyperbranched polymeric biguanides (PAPBs) with a four-arm central core PAMAM structure were synthesized. The bactericidal and cell toxicity tests showed that PAPB had excellent bactericidal activity against both Gram-positive bacteria and Gram-negative, and the chemical binding of PHMB and PAMAM had synergistic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!