Mammalian adult neurons of the central nervous system (CNS) display limited ability to regrow axons after trauma. The developmental decline in their regenerative ability has been attributed to both intrinsic and extrinsic factors, including postnatal suppression of transcription factors and non-neuronal inhibitory components, respectively. The cell adhesion molecule Contactin 2 (CNTN2) is expressed in neurons and oligodendrocytes in the CNS. Neuronal CNTN2 is highly regulated during development and plays critical roles in axon growth and guidance and neuronal migration. On the other hand, CNTN2 expressed by oligodendrocytes interferes with the myelination process, with its ablation resulting in hypomyelination. In the current study, we investigate the role of CNTN2 in neuronal survival and axon regeneration after trauma, in the murine optic nerve crush (ONC) model. We unveil distinct roles for neuronal and glial CNTN2 in regenerative responses. Surprisingly, our data show a conflicting role of neuronal and glial CNTN2 in axon regeneration. Although glial CNTN2 as well as hypomyelination are dispensable for both neuronal survival and axon regeneration following ONC, the neuronal counterpart comprises a negative regulator of regeneration. Specifically, we reveal a novel mechanism of action for neuronal CNTN2, implicating the inhibition of Akt signalling pathway. The in vitro analysis indicates a BDNF-independent mode of action and biochemical data suggest the implication of the truncated form of TrkB neurotrophin receptor. In conclusion, CNTN2 expressed in CNS neurons serves as an inhibitor of axon regeneration after trauma and its mechanism of action involves the neutralization of Akt-mediated neuroprotective effects.

Download full-text PDF

Source
http://dx.doi.org/10.1111/ejn.15121DOI Listing

Publication Analysis

Top Keywords

axon regeneration
20
neuronal glial
12
cntn2 expressed
12
glial cntn2
12
neuronal
9
cntn2
9
optic nerve
8
neuronal cntn2
8
neuronal survival
8
survival axon
8

Similar Publications

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Engineered extracellular vesicles play an increasingly important role in the treatment of spinal cord injury. In order to prepare more effective engineered extracellular vesicles, we biologically modified M2 microglia. Angiopep-2 (Ang2) is an oligopeptide that can target the blood-brain barrier.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).

View Article and Find Full Text PDF

Exosomes: new targets for understanding axon guidance in the developing central nervous system.

Front Cell Dev Biol

January 2025

Key Laboratory of Tropical Translational Medicine and Ministry of Education, Hainan Academy of Medical Sciences, Hainan Medical University, Haikou, China.

Axon guidance is a key event in neural circuit development that drives the correct targeting of axons to their targets through long distances and unique patterns. Exosomes, extracellular vesicles that are smaller than 100 nm, are secreted by most cell types in the brain. Regulation of cell-cell communication, neuroregeneration, and synapse formation by exosomes have been extensively studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!