AI Article Synopsis

Article Abstract

Gestational bisphenol A (BPA) exposure induced multiple programmed diseases in the adult offsprings. Thus, this study targeted exploring the physiological impacts of melatonin (MEL) as a reprogramming strategy against in utero BPA exposure on reproductive capacity of adult F1 female rat offspring. Forty adult pregnant albino female rats were divided equally into 5 groups (n = 8): group I (control), group II (low-dose BPA; 25 μg BPA/kg B.w.t.), group III (low-dose BPA + 10 mg MEL/kg B.w.t.), group IV (high-dose BPA; 250 μg/kg B.w.t.), and group V (high-dose BPA + MEL). Treatments were given daily by subcutaneous (s/c) injection from the fourth day of pregnancy until full term. After delivery, female offspring were selected, and on postnatal day 60, adult offspring were examined for estrus regularity and then were sacrificed at estrus to collect blood and tissue samples. Findings clarified that in utero BPA exposure (both doses) increased significantly (P < 0.05) the ovarian weights and the serum levels of estrogen but decreased that of triiodothyronine (T3) compared to control groups. Significant increasing of serum malondialdehyde (MDA) and decreasing of total antioxidant capacity (TAC) were also detected. Both doses of BPA disturbed remarkably the estrus cycles and caused marked aberrations in ovarian and uterine tissues. Interestingly, prenatal MEL co-treatment with BPA mitigated significantly all of these degenerative changes. Thus, this study first demonstrated that prenatal MEL therapy could be used as a potent reprogramming intervention against BPA-induced reproductive disorders in the adult F1 female rat offspring.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s43032-020-00452-8DOI Listing

Publication Analysis

Top Keywords

bpa exposure
12
physiological impacts
8
reproductive capacity
8
adult female
8
female offspring
8
utero bpa
8
group high-dose
8
adult
5
bpa
5
group
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!