Patients with influenza and SARS-CoV2/Coronavirus disease 2019 (COVID-19) infections have different clinical course and outcomes. We developed and validated a supervised machine learning pipeline to distinguish the two viral infections using the available vital signs and demographic dataset from the first hospital/emergency room encounters of 3,883 patients who had confirmed diagnoses of influenza A/B, COVID-19 or negative laboratory test results. The models were able to achieve an area under the receiver operating characteristic curve (ROC AUC) of at least 97% using our multiclass classifier. The predictive models were externally validated on 15,697 encounters in 3,125 patients available on TrinetX database that contains patient-level data from different healthcare organizations. The influenza vs. COVID-19-positive model had an AUC of 98%, and 92% on the internal and external test sets, respectively. Our study illustrates the potentials of machine-learning models for accurately distinguishing the two viral infections. The code is made available at https://github.com/ynaveena/COVID-19-vs-Influenza and may be have utility as a frontline diagnostic tool to aid healthcare workers in triaging patients once the two viral infections start cocirculating in the communities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814848PMC
http://dx.doi.org/10.1101/2021.01.13.21249540DOI Listing

Publication Analysis

Top Keywords

viral infections
12
patients
5
vital sign-based
4
sign-based prediction
4
prediction algorithm
4
algorithm differentiating
4
differentiating covid-19
4
covid-19 versus
4
versus seasonal
4
influenza
4

Similar Publications

Oropuche Virus-An Emerging Pathogen With Escalating Risk for Outbreaks of Human Infection.

J Med Virol

January 2025

Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Twin Cities, Minnesota, USA.

View Article and Find Full Text PDF

N4-acetylcytidine (ac4C) modification is a crucial RNA modification widely present in eukaryotic RNA. Previous studies have demonstrated that ac4C plays a pivotal role in viral infections. Despite numerous studies highlighting the strong correlation between ac4C modification and cancer progression, its detailed roles and molecular mechanisms in normal physiological processes and cancer progression remain incompletely understood.

View Article and Find Full Text PDF

Introduction: Japanese encephalitis virus (JEV) and Zika virus (ZIKV) are prevalent in over 80 countries or territories worldwide, causing hundreds of thousands of cases annually. But currently there is a lack of specific antiviral agents and effective vaccines.

Methods: In the present study, to identify human neutralizing monoclonal antibody (mAb) against JEV or/and ZIKV, we isolated ZIKV-E protein-binding B cells from the peripheral venous blood of a healthy volunteer who had received the JEV live-attenuated vaccine and performed 10× Genomics transcriptome sequencing and BCR sequencing analysis, we then obtained the V region amino acid sequences of a novel mAb LZY3412.

View Article and Find Full Text PDF

Viral infection, APOBEC3 dysregulation, and cancer.

Front Genet

December 2024

Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, United States.

Viral infection plays a significant role in the development and progression of many cancers. Certain viruses, such as Human Papillomavirus (HPV), Epstein-Barr Virus (EBV), and Hepatitis B and C viruses (HBV, HCV), are well-known for their oncogenic potential. These viruses can dysregulate specific molecular and cellular processes through complex interactions with host cellular mechanisms.

View Article and Find Full Text PDF

After the global impact of the COVID-19 pandemic, concerns over virus transmission have risen. A state of health emergency was declared in 2022 due to Clade 2 of the monkeypox (MPOX) virus. In August 2024, another emergency was declared by the World Health Organization (WHO) because of the widespread Clade 1b, which caused a more severe and lethal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!