Genomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning (ML) which focuses on densely connected networks using artificial neural networks for training the models. The objective of this research was to evaluate the potential of DL models in the Washington State University spring wheat breeding program. We compared the performance of two DL algorithms, namely multilayer perceptron (MLP) and convolutional neural network (CNN), with ridge regression best linear unbiased predictor (rrBLUP), a commonly used GS model. The dataset consisted of 650 recombinant inbred lines (RILs) from a spring wheat nested association mapping (NAM) population planted from 2014-2016 growing seasons. We predicted five different quantitative traits with varying genetic architecture using cross-validations (CVs), independent validations, and different sets of SNP markers. Hyperparameters were optimized for DL models by lowering the root mean square in the training set, avoiding model overfitting using dropout and regularization. DL models gave 0 to 5% higher prediction accuracy than rrBLUP model under both cross and independent validations for all five traits used in this study. Furthermore, MLP produces 5% higher prediction accuracy than CNN for grain yield and grain protein content. Altogether, DL approaches obtained better prediction accuracy for each trait, and should be incorporated into a plant breeder's toolkit for use in large scale breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7813801 | PMC |
http://dx.doi.org/10.3389/fpls.2020.613325 | DOI Listing |
Alzheimers Dement
December 2024
Xuanwu Hospital, Capital Medical University, Beijing, Beijing, China.
Background: Effective early intervention of mild cognitive impairment (MCI) is the key for preventing dementia. However, there is currently no drug for MCI. As a multi-targeted neuroprotective agent, butylphthalide has been demonstrated to repair cognition in patients with vascular cognitive impairment, and has the potential to treat MCI due to Alzheimer's disease (AD).
View Article and Find Full Text PDFUp to date, there are no precise reports of the prevalence of dementia with Lewy bodies (DLB) in Latin America. This can be explained by the lack of research studies and general little awareness about the disease. Notably, collaborative clinical studies are lacking, and DLB patients remain underrepresented despite their significant morbidity.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
Background: The prohibitive costs of drug development for Alzheimer's Disease (AD) emphasize the need for alternative in silico drug repositioning strategies. Graph learning algorithms, capable of learning intrinsic features from complex network structures, can leverage existing databases of biological interactions to improve predictions in drug efficacy. We developed a novel machine learning framework, the PreSiBOGNN, that integrates muti-modal information to predict cognitive improvement at the subject level for precision medicine in AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Keck School of Medicine of USC, Los Angeles, CA, USA.
Background: Research on biomarkers for Alzheimer's pathology has progressed rapidly. We summarize the evidence and make recommendations about biomarkers for future clinical use.
Method: Our interdisciplinary, international, multicultural group of experts in the Lancet Commission on dementia adopted a triangulation framework, prioritizing systematic reviews and meta-analyses and agreed on the best evidence for recommendations.
Alzheimers Dement
December 2024
Department of Psychology & Language Sciences, University College London, London, United Kingdom.
Background: Dysphagia is an important feature of neurodegenerative diseases and potentially life-threatening in primary progressive aphasia (PPA), but remains poorly characterised in these syndromes. We hypothesised that dysphagia would be more prevalent in nonfluent/agrammatic variant (nfv)PPA than other PPA syndromes, predicted by accompanying motor features and associated with atrophy affecting regions implicated in swallowing control.
Methods: In a retrospective case-control study at our tertiary referral centre, we recruited 56 patients with PPA (21 nfvPPA, 22 semantic variant (sv)PPA, 13 logopenic variant (lv)PPA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!