Brain-Computer Interface (BCI) systems enable an alternative communication channel for severely-motor disabled patients to interact with their environment using no muscular movements. In recent years, the importance of research into non-gaze dependent brain-computer interface paradigms has been increasing, in contrast to the most frequently studied BCI-based speller paradigm (i.e., row-column presentation, RCP). Several visual modifications that have already been validated under the RCP paradigm for communication purposes have not been validated under the most extended non-gaze dependent rapid serial visual presentation (RSVP) paradigm. Thus, in the present study, three different sets of stimuli were assessed under RSVP, with the following communication features: white letters (WL), famous faces (FF), neutral pictures (NP). Eleven healthy subjects participated in this experiment, in which the subjects had to go through a calibration phase, an online phase and, finally, a subjective questionnaire completion phase. The results showed that the FF and NP stimuli promoted better performance in the calibration and online phases, being slightly better in the FF paradigm. Regarding the subjective questionnaires, again both FF and NP were preferred by the participants in contrast to the WL stimuli, but this time the NP stimuli scored slightly higher. These findings suggest that the use of FF and NP for RSVP-based spellers could be beneficial to increase information transfer rate in comparison to the most frequently used letter-based stimuli and could represent a promising communication system for individuals with altered ocular-motor function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7814000PMC
http://dx.doi.org/10.3389/fncom.2020.587702DOI Listing

Publication Analysis

Top Keywords

bci-based speller
8
rsvp paradigm
8
brain-computer interface
8
non-gaze dependent
8
stimuli
6
paradigm
5
performance analysis
4
analysis types
4
types visual
4
visual stimuli
4

Similar Publications

Brain-computer interfaces (BCIs) enable direct communication between the brain and external devices using electroencephalography (EEG) signals. BCIs based on code-modulated visual evoked potentials (cVEPs) are based on visual stimuli, thus appropriate visual feedback on the interface is crucial for an effective BCI system. Many previous studies have demonstrated that implementing visual feedback can improve information transfer rate (ITR) and reduce fatigue.

View Article and Find Full Text PDF

Commands in brain-computer interface (BCI) applications often rely on the decoding of event-related potentials (ERP). For instance, the P300 potential is frequently used as a marker of attention to an oddball event. Error-related potentials and the N2pc signal are further examples of ERPs used for BCI control.

View Article and Find Full Text PDF

The prevalence of stroke-induced cognitive impairment is high. Effective approaches to the treatment of these cognitive impairments after stroke remain a serious and perhaps underestimated challenge. A BCI-based task-focused training that results in repetitive recruitment of the normal motor or cognitive circuits may strengthen stroke-affected neuronal connectivity, leading to functional improvements.

View Article and Find Full Text PDF

Covariance matrices of noisy multichannel electroencephalogram (EEG) time series data provide essential information for the decoding of brain signals using machine learning methods. However, small datasets and high dimensionality make it hard to estimate these matrices. In brain-computer interfaces (BCI) based on event-related potentials (ERP) and a linear discriminant analysis (LDA) classifier, the state of the art covariance estimation uses shrinkage regularization.

View Article and Find Full Text PDF

Robust asynchronous control of ERP-Based brain-Computer interfaces using deep learning.

Comput Methods Programs Biomed

March 2022

Biomedical Engineering Group, E.T.S Ingenieros de Telecomunicación, University of Valladolid, Paseo de Belén 15, 47011, Valladolid, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Spain. Electronic address:

Background And Objective: Brain-computer interfaces (BCI) based on event-related potentials (ERP) are a promising technology for alternative and augmented communication in an assistive context. However, most approaches to date are synchronous, requiring the intervention of a supervisor when the user wishes to turn his attention away from the BCI system. In order to bring these BCIs into real-life applications, a robust asynchronous control of the system is required through monitoring of user attention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!