Background: Castration-resistant prostate cancer (CRPC) is still considered incurable, even though the mechanisms of CRPC had been extensively researched. Studies have demonstrated that exosomes in the tumor microenvironment contribute to prostate cancer development and progression. However, the role of exosomes in the process of CRPC progression has not yet been determined.

Methods: Co-culturing and exosome treatment assays combined with in vitro and in vivo assays were performed to determine the function of exosomes in the transformation of androgen-dependent prostate cancer (ADPC) cells into androgen-independent cells. Then, the mRNA expression profiles of ADPC cells and ADPC cells co-cultured with androgen-independent prostate cancer (AIPC) cell-derived exosomes were studied using microarrays. After silencing the expression of heme oxygenase-1 (HMOX1), Western blotting, quantitative real-time PCR, immunohistochemistry (IHC) studies, and MTS assay were used to confirm the mechanisms of exosome participation in CRPC progression.

Results: The results showed that ADPC cells acquired tolerance for androgen deprivation due to the exosome-mediated communication between cells. AIPC cell-derived exosomes promoted the transformation of ADPC cells into androgen-independent cells in vivo and in vitro. Microarray analysis revealed that HMOX1 in ADPC cells was up-regulated after treatment with AIPC cell-derived exosomes. Further results showed that HMOX1 is overexpressed in human AIPC specimens and protects ADPC cells from androgen deprivation.

Conclusions: Our findings revealed that exosomes contribute to CRPC progression via promoting the transition of prostate cancer cells into an androgen-independent growth stage by activating HMOX1.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811443PMC
http://dx.doi.org/10.2147/IJN.S281710DOI Listing

Publication Analysis

Top Keywords

adpc cells
28
prostate cancer
24
cells androgen-independent
16
cells
12
aipc cell-derived
12
cell-derived exosomes
12
exosomes
8
androgen-dependent prostate
8
cancer cells
8
heme oxygenase-1
8

Similar Publications

Unlabelled: Most metastatic prostate cancers (PCa) initially depend on androgen for survival and proliferation. Thus, anti-androgen or castration therapies are the mainstay treatment. Although effective at first, androgen-dependent PCa (ADPC) universally develops therapy resistance, thereby evolving to the incurable disease, called castration resistant PCa (CRPC).

View Article and Find Full Text PDF

Bacillus cereus CwpFM induces colonic tissue damage and inflammatory responses through oxidative stress and the NLRP3/NF-κB pathway.

Sci Total Environ

July 2024

Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. Electronic address:

Bacillus cereus (B. cereus) from cow milk poses a threat to public health, causing food poisoning and gastrointestinal disorders in humans. We identified CwpFM, an enterotoxin from B.

View Article and Find Full Text PDF

The emergence of castration-resistant prostate cancer (CRPC) following androgen deprivation therapy (ADT) is associated with increased malignancy and limited treatment options. This study aims to investigate potential connections between immune cell infiltration and inflammatory cytokines with the YAP1/AR/PSA axis by exploring their interactions with autophagy. Our research reveals heightened levels of Yes-associated protein 1 (YAP1) expression in CRPC tissues compared with tissues from androgen-dependent prostate cancer (ADPC) and benign prostate hyperplasia (BPH).

View Article and Find Full Text PDF

Androgen deprivation therapy (ADT) is the standard of care for high risk and advanced prostate cancer; however, disease progression from androgen-dependent prostate cancer (ADPC) to lethal and incurable castration-resistant prostate cancer (CRPC) and (in a substantial minority of cases) neuroendocrine prostate cancer (NEPC) is common. Identifying effective targeted therapies is challenging because of acquired resistance to established treatments and the vast heterogeneity of advanced prostate cancer (PC). To streamline the identification of potentially active prostate cancer therapeutics, we have developed an adaptable semi-automated protocol which optimizes cell growth and leverages automation to enhance robustness, reproducibility, and throughput while integrating live-cell imaging and endpoint viability assays to assess drug efficacy in vitro.

View Article and Find Full Text PDF

Despite the clinical benefits of androgen deprivation therapy, most patients with advanced androgen-dependent prostate cancer (ADPC) eventually relapse and progress to lethal androgen-independent prostate cancer (AIPC), also termed castration-resistant prostate cancer (CRPC). MiRNAs can be packaged into exosomes (Exos) and shuttled between cells. However, the roles and mechanisms of exosomal miRNAs involved in CRPC progression have not yet been fully elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!