p53 Promoted Ferroptosis in Ovarian Cancer Cells Treated with Human Serum Incubated-Superparamagnetic Iron Oxides.

Int J Nanomedicine

Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130021, People's Republic of China.

Published: January 2021

Methods: In this study, we used MTT assays to demonstrate that a combination of SPIO-Serum and wild-type p53 overexpression can reduce ovarian cancer cell viability . Prussian blue staining and iron assays were used to determine changes in intracellular iron concentration following SPIO-Serum treatment. TEM was used to evaluate any mitochondrial damage induced by SPIO-Serum treatment, and Western blot was used to evaluate the expression of the iron transporter and lipid peroxidation regulator proteins. JC-1 was used to measure mitochondrial membrane potential, and ROS levels were estimated by flow cytometry. Finally, xCT protein expression and mitochondrial ROS levels were confirmed using fluorescence microscopy.

Results: SPIO-Serum effectively induced lipid peroxidation and generated abundant toxic ROS. It also facilitated the downregulation of GPX4 and xCT, ultimately resulting in iron-dependent oxidative death. These effects could be reversed by iron chelator DFO and lipid peroxidation inhibitor Fer-1. SPIO-Serum treatment disrupted intracellular iron homeostasis by regulating iron uptake and the cells presented with missing mitochondrial cristae and ruptured outer mitochondrial membranes. Moreover, we were able to show that p53 contributed to SPIO-Serum-induced ferroptosis in ovarian cancer cells.

Conclusion: SPIO-Serum induced ferroptosis and overexpressed p53 contributed to ferroptosis in ovarian cancer cells. Our data provide a theoretical basis for ferroptosis as a novel cell death phenotype induced by nanomaterials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7811475PMC
http://dx.doi.org/10.2147/IJN.S282489DOI Listing

Publication Analysis

Top Keywords

ovarian cancer
16
ferroptosis ovarian
12
spio-serum treatment
12
lipid peroxidation
12
cancer cells
8
intracellular iron
8
ros levels
8
p53 contributed
8
iron
7
spio-serum
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!