Fractional re-distribution among cell motility states during ageing.

Commun Biol

Department of Chemical and Biomolecular Engineering, Institute for NanoBiotechnology (INBT), Johns Hopkins University, Baltimore, MD, 21218, USA.

Published: January 2021

Ageing in humans is associated with the decreased capacity to regulate cell physiology. Cellular properties, such as cell morphology and mechanics, encode ageing information, and can therefore be used as robust biomarkers of ageing. Using a panel of dermal fibroblasts derived from healthy donors spanning a wide age range, we observe an age-associated decrease in cell motility. By taking advantage of the single-cell nature of our motility data, we classified cells based on spatial and activity patterns to define age-dependent motility states. We show that the age-dependent decrease in cell motility is not due to the reduced motility of all cells, but results from the fractional re-distribution among motility states. These findings highlight an important feature of ageing cells characterized by a reduction of cellular heterogeneity in older adults relative to post-adolescent/adults. Furthermore, these results point to a mechanistic framework of ageing, with potential applications in deciphering emergent ageing phenotypes and biomarker development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815872PMC
http://dx.doi.org/10.1038/s42003-020-01605-wDOI Listing

Publication Analysis

Top Keywords

cell motility
12
motility states
12
fractional re-distribution
8
decrease cell
8
motility
7
ageing
7
cell
5
re-distribution cell
4
states ageing
4
ageing ageing
4

Similar Publications

Osteosarcoma (OS) is a prevalent invasive bone cancer, with numerous homeobox family genes implicated in tumor progression. This study aimed to develop a prognostic model using HOX family genes to assess osteosarcoma patient outcomes. Data from osteosarcoma patients in The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohorts were collected.

View Article and Find Full Text PDF

De-regulated protein expression contributes to tumor growth and progression in medulloblastoma (MB), the most common malignant brain tumor in children. MB is associated with impaired differentiation of specific neural progenitors, suggesting that the deregulation of proteins involved in neural physiology could contribute to the transformed phenotype in MB. Calsynthenin 1 (CLSTN1) is a neuronal protein involved in cell-cell interaction, vesicle trafficking, and synaptic signaling.

View Article and Find Full Text PDF

Peripheral inflammation enhances opioid-induced gastrointestinal motility inhibition via up-regulating spinal mu opioid receptor.

Toxicol Appl Pharmacol

January 2025

Department of Animal and Biomedical Sciences, School of Life Sciences, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China; Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, China. Electronic address:

Opioids are potent analgesics in clinical pain management but exert variable analgesia in different pain types. Opioid-induced constipation is a common side effect of opioid therapy, and whether opioids induce different gastrointestinal motility inhibitions in different pain types is unknown. In this study, we evaluated the antinociceptive effects and inhibition of upper gastrointestinal transit and colonic bead expulsion of morphine, DAMGO, and Deltorphin in mouse CFA chronic inflammatory pain, SNI chronic neuropathic pain, and carrageenan chronic inflammatory pain models.

View Article and Find Full Text PDF

Purpose Subfertility is a well-known aftermath of treatment of testicular germ cell tumours (GCTs). Growing evidence suggests reduced semen quality also before therapy. The present study aimed to evaluate pre-orchiectomy semen parameters in GCT patients and to compare the results with controls.

View Article and Find Full Text PDF

The molecular basis for the liquid-liquid phase separation (LLPS) behavior of various biomolecular components in the cell is the formation of multivalent and low-affinity interactions. When the content of these components exceeds a certain critical concentration, the molecules will spontaneously coalesce to form a new liquid phase; i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!