We have studied optical properties of single-layer and multi-fold nanoporous gold leaf (NPGL) metamaterials and observed highly unusual transmission spectra composed of two well-resolved peaks. We explain this phenomenon in terms of a surface plasmon absorption band positioned on the top of a broader transmission band, the latter being characteristic of both homogeneous "solid" and inhomogeneous "diluted" Au films. The transmission spectra of NPGL metamaterials were shown to be controlled by external dielectric environments, e.g. water and applied voltage in an electrochemical cell. This paves the road to numerous functionalities of the studied tunable and active metamaterials, including control of spontaneous emission, energy transfer and many others.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7815877PMC
http://dx.doi.org/10.1038/s41598-021-81128-4DOI Listing

Publication Analysis

Top Keywords

nanoporous gold
8
npgl metamaterials
8
transmission spectra
8
gold nanoleaf
4
nanoleaf tunable
4
tunable metamaterial
4
metamaterial studied
4
studied optical
4
optical properties
4
properties single-layer
4

Similar Publications

Electrocatalytic CO reduction into high-value multicarbon products offers a sustainable approach to closing the anthropogenic carbon cycle and contributing to carbon neutrality, particularly when renewable electricity is used to power the reaction. However, the lack of efficient and durable electrocatalysts with high selectivity for multicarbons severely hinders the practical application of this promising technology. Herein, a nanoporous defective AuCu single-atom alloy (De-AuCu SAA) catalyst is developed through facile low-temperature thermal reduction in hydrogen and a subsequent dealloying process, which shows high selectivity toward ethylene (CH), with a Faradaic efficiency of 52% at the current density of 252 mA cm under a potential of -1.

View Article and Find Full Text PDF

A label-free electrochemical biosensor based on graphene quantum dots-nanoporous gold nanocomposite for highly sensitive detection of glioma cell.

Anal Chim Acta

February 2025

School of Life Sciences, The Second Affiliated Hospital, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, PR China. Electronic address:

Background: Glioma accounts for 80 % of all malignant primary brain tumors with a high mortality rate. Histopathological examination is the current diagnostic methods for glioma, but its invasive surgical interventions can cause cerebral edema or impair neural functioning. Liquid biopsy proves to be an efficient method for glioma detection.

View Article and Find Full Text PDF

The development of universal electrochemical sensing platforms with high sensitivity and specificity is of great significance for advancing practical disease diagnostic methods and devices. Exploring the structural properties of electrode materials and their interaction with biomolecules is essential to developing novel and distinctive analytical approaches. Here, we innovatively investigated the effect of DNA length and configuration on DNA molecule transfer into the nanostructure of a nanoporous gold (NPG) electrode.

View Article and Find Full Text PDF

Conquering surface fouling of sensors caused by nonspecific adsorption and accumulation of foulants in a food matrix is of significance in accurate food safety analysis. Herein, an antifouling electrochemical aptasensor based on a Y-shaped peptide and nanoporous gold (NPG) for aflatoxin B1 detection in milk, tofu, and rice flour was proposed. The self-designed Y-shaped peptide involves an anchoring segment (-C), a support structure (-PPPP-), and an antifouling domain with two branches (-EK(KSRE)DER-) inspired by two bioactive peptides.

View Article and Find Full Text PDF

A novel and sensitive trefoil-structured biosensor based on nanoporous gold for simultaneous determination of microRNA-21 and microRNA-16.

Biosens Bioelectron

March 2025

State Key Laboratory of Quality Research in Chinese Medicines & School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macau 999078, China. Electronic address:

Although electrochemical biosensors have been developed to detect multiple microRNAs (miRNAs) simultaneously through loading different capture probes, high surface-induced perturbation and competition among probes have reduced the detection sensitivity. To address these challenges, a trefoil DNA capture probe (TDCP) was designed for microRNA-21 (miR-21) and microRNA-16 (miR-16) detection simultaneously. The TDCP exhibits a stable structure, low spatial resistance, and integral rigidity, which decreases high surface-induced perturbations and competition to improve the accessibility of the target miRNA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!