Recent technological advances have expanded the annotated protein coding content of mammalian genomes, as hundreds of previously unidentified, short open reading frame (ORF)-encoded peptides (SEPs) have now been found to be translated. Although several studies have identified important physiological roles for this emerging protein class, a general method to define their interactomes is lacking. Here, we demonstrate that genetic incorporation of the photo-crosslinking noncanonical amino acid AbK into SEP transgenes allows for the facile identification of SEP cellular interaction partners using affinity-based methods. From a survey of seven SEPs, we report the discovery of short ORF-encoded histone binding protein (SEHBP), a conserved microprotein that interacts with chromatin-associated proteins, localizes to discrete genomic loci, and induces a robust transcriptional program when overexpressed in human cells. This work affords a straightforward method to help define the physiological roles of SEPs and demonstrates its utility by identifying SEHBP as a short ORF-encoded transcription factor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7848545PMC
http://dx.doi.org/10.1073/pnas.2021943118DOI Listing

Publication Analysis

Top Keywords

short orf-encoded
12
physiological roles
8
short
4
orf-encoded transcriptional
4
transcriptional regulator
4
regulator technological
4
technological advances
4
advances expanded
4
expanded annotated
4
annotated protein
4

Similar Publications

Certain long non-coding RNAs (lncRNAs) have potential peptide-coding abilities. Here, the role and molecular basis of the RNF217-AS1-encoded peptide in stomach cancer (SC) tumorigenesis were explored. Here, lncRNAs associated with SC pathogenesis and macrophage infiltration and lncRNAs with peptide-coding potential were searched by bioinformatics analysis.

View Article and Find Full Text PDF

Identification of phosphorylated small ORF-encoded peptides in Hep3B cells by LC/MS/MS.

J Proteomics

July 2024

School of Life Sciences, and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan, Hubei 430079, People's Republic of China. Electronic address:

Small ORF-encoded peptides (SEPs) are a class of low molecular weight proteins and peptides comprising <100 amino acids with important functions in various life activities. Although the sequence length is short, SEPs might also have post-translational modification (PTM). Phosphorylation is one of the most essential PTMs of proteins.

View Article and Find Full Text PDF

Hidden in plain sight: challenges in proteomics detection of small ORF-encoded polypeptides.

Microlife

May 2022

iRIP Unit, Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, 9000 Ghent, Belgium.

Genomic studies of bacteria have long pointed toward widespread prevalence of small open reading frames (sORFs) encoding for short proteins, <100 amino acids in length. Despite the mounting genomic evidence of their robust expression, relatively little progress has been made in their mass spectrometry-based detection and various blanket statements have been used to explain this observed discrepancy. In this study, we provide a large-scale riboproteogenomics investigation of the challenging nature of proteomic detection of such small proteins as informed by conditional translation data.

View Article and Find Full Text PDF

The translational landscape of human vascular smooth muscle cells identifies novel short open reading frame-encoded peptide regulators for phenotype alteration.

Cardiovasc Res

July 2023

1Department of Cardiology, Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, 58 Zhongshan Er Road, Guangzhou 510080, China.

Aims: The plasticity of vascular smooth muscle cells (VSMCs) enables them to alter phenotypes under various physiological and pathological stimuli. The alteration of VSMC phenotype is a key step in vascular diseases, including atherosclerosis. Although the transcriptome shift during VSMC phenotype alteration has been intensively investigated, uncovering multiple key regulatory signalling pathways, the translatome dynamics in this cellular process, remain largely unknown.

View Article and Find Full Text PDF

Recently, accumulating study shows that some long non-coding RNAs (lncRNAs) have potential protein/peptide-coding capacities. In this study, the coding potential of lncRNA distal-less homeobox 6 antisense 1 (DLX6-AS1) was examined and the roles and downstream pathways of a DLX6-AS1-encoded peptide in non-small-cell lung cancer (NSCLC) cell development were investigated. The peptide-coding potential of lncRNA DLX6-AS1 was extrapolated based on prior ribosome footprint and ribosome sequencing data, IPX0002962000 mass spectrometry dataset, and Getorf bioinformatics analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!