The molecular mechanisms by which cilia orientation is coordinated within and between multi-ciliated cells (MCCs) are not fully understood. In the mouse oviduct, MCCs exhibit a characteristic basal body (BB) orientation and microtubule gradient along the tissue axis. The intracellular polarities were moderately maintained in cells lacking CELSR1 (cadherin EGF LAG seven-pass G-type receptor 1), a planar cell polarity (PCP) factor involved in tissue polarity regulation, although the intercellular coordination of the polarities was disrupted. However, CAMSAP3 (calmodulin-regulated spectrin-associated protein 3), a microtubule minus-end regulator, was found to be critical for determining the intracellular BB orientation. CAMSAP3 localized to the base of cilia in a polarized manner, and its mutation led to the disruption of intracellular coordination of BB orientation, as well as the assembly of microtubules interconnecting BBs, without affecting PCP factor localization. Thus, both CELSR1 and CAMSAP3 are responsible for BB orientation but in distinct ways; their cooperation should therefore be critical for generating functional multi-ciliated tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jcs.257006DOI Listing

Publication Analysis

Top Keywords

cilia orientation
8
orientation coordinated
8
celsr1 camsap3
8
multi-ciliated cells
8
pcp factor
8
orientation
6
intercellular intracellular
4
intracellular cilia
4
coordinated celsr1
4
camsap3
4

Similar Publications

Breaking Left-Right Symmetry by the Interplay of Planar Cell Polarity, Calcium Signaling and Cilia.

Cells

December 2024

Laboratoire de Biologie du Développement, LBD, CNRS UMR7622, INSERM U1156, Sorbonne Université, F-75005 Paris, France.

The formation of the embryonic left-right axis is a fundamental process in animals, which subsequently conditions both the shape and the correct positioning of internal organs. During vertebrate early development, a transient structure, known as the left-right organizer, breaks the bilateral symmetry in a manner that is critically dependent on the activity of motile and immotile cilia or asymmetric cell migration. Extensive studies have partially elucidated the molecular pathways that initiate left-right asymmetric patterning and morphogenesis.

View Article and Find Full Text PDF

This study investigates the control of ciliary beat patterns during ammonium chemotaxis in the model ciliate microalga Chlamydomonas reinhardtii. Screening the chemotaxis response of mutant strains with ciliary defects revealed that a strain lacking CAV2, the alpha subunit of the voltage-gated calcium channel, is deficient in ammonium chemotaxis. CAV2 regulates the switching of the ciliary beat pattern from the asymmetric to the symmetric waveform.

View Article and Find Full Text PDF

Directional ciliary beats across epithelia require Ccdc57-mediated coupling between axonemal orientation and basal body polarity.

Nat Commun

November 2024

Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.

Motile cilia unify their axonemal orientations (AOs), or beat directions, across epithelia to drive liquid flows. This planar polarity results from cytoskeleton-driven swiveling of basal foot (BF), a basal body (BB) appendage coincident with the AO, in response to regulatory cues. How and when the BF-AO relationship is established, however, are unaddressed.

View Article and Find Full Text PDF

A synthetic method to assay polycystin channel biophysics.

Elife

October 2024

Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, United States.

Ion channels are biological transistors that control ionic flux across cell membranes to regulate electrical transmission and signal transduction. They are found in all biological membranes and their conductive state kinetics are frequently disrupted in human diseases. Organelle ion channels are among the most resistant to functional and pharmacological interrogation.

View Article and Find Full Text PDF

SLMAP3 is a constituent of the centrosome and is known to assemble with the striatin-interacting phosphatase and kinase (STRIPAK) complex, where it has been reported to repress Hippo signalling. The global knockout of SLMAP3 in mice results in embryonic/perinatal lethality and stunted growth without changes in the phosphorylation status of YAP. Diverse phenotypes present in the SLMAP3 embryos include reduced body axis, small and abnormal organs resembling defects in planar cell polarity (PCP) signalling, while also displaying the notable polycystic kidneys, a known manifestation of ciliopathies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!