Choline Pathway Nutrients and Metabolites and Cognitive Impairment After Acute Ischemic Stroke.

Stroke

Department of Epidemiology, School of Public Health and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China (C.Z., Z.L., B.C., S.Q., X.Z., A.W., T.X., Y.Z.).

Published: March 2021

Background And Purpose: Choline metabolism was suggested to play pathophysiological roles in nervous system and atherosclerosis development. However, little is known about the impacts of choline pathway nutrients and metabolites on poststroke cognitive impairment. We aimed to prospectively investigate the relationships between circulating choline, betaine, and trimethylamine N-oxide with cognitive impairment among acute ischemic stroke patients.

Methods: We derived data from CATIS (China Antihypertensive Trial in Acute Ischemic Stroke). Plasma choline, betaine, and trimethylamine N-oxide concentrations at baseline were measured in 617 participants. Cognitive impairment was evaluated using the Mini-Mental State Examination and the Montreal Cognitive Assessment. Reclassification and calibration of models with choline-related biomarkers were evaluated.

Results: Plasma choline and betaine were inversely associated with cognitive impairment. Compared with the lowest tertile, adjusted odds ratios of Mini-Mental State Examination-defined cognitive impairment for participants in the highest tertiles of choline and betaine were 0.59 (95% CI, 0.39-0.90) and 0.60 (95% CI, 0.39-0.92), respectively. In addition, both choline and betaine offered incremental predictive ability over the basic model with established risk factors, shown by increase in net reclassification improvement and integrated discrimination improvement. There were similar significant relationships between choline and betaine with cognitive impairment as defined by the Montreal Cognitive Assessment. However, plasma trimethylamine N-oxide was only associated with cognitive impairment evaluated using the Mini-Mental State Examination; the adjusted odds ratio was 1.33 (95% CI, 1.04-1.72) for each 1-SD increment of trimethylamine N-oxide.

Conclusions: Patients with higher choline and betaine levels had lower risk of cognitive impairment after ischemic stroke, supporting promising prognostic roles of choline pathway nutrients for poststroke cognitive impairment.

Download full-text PDF

Source
http://dx.doi.org/10.1161/STROKEAHA.120.031903DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
40
choline betaine
28
ischemic stroke
16
choline pathway
12
pathway nutrients
12
cognitive
12
acute ischemic
12
trimethylamine n-oxide
12
mini-mental state
12
choline
11

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!