Mesenchymal stem cells (MSCs) are a promising therapy to improve vascular repair, yet their role in ischemic retinopathy is not fully understood. The aim of this study is to investigate the impact of modulating the neurotrophin receptor; p75 on the vascular protection of MSCs in an acute model of retinal ischemia/reperfusion (I/R). Wild type (WT) and p75 mice were subjected to I/R injury by increasing intra-ocular pressure to 120 mmHg for 45 min, followed by perfusion. Murine GFP-labeled MSCs (100,000 cells/eye) were injected intravitreally 2 days post-I/R and vascular homing was assessed 1 week later. Acellular capillaries were counted using trypsin digest 10-days post-I/R. In vitro, MSC-p75 was modulated either genetically using siRNA or pharmacologically using the p75 modulator; LM11A-31, and conditioned media were co-cultured with human retinal endothelial cells (HREs) to examine the angiogenic response. Finally, visual function in mice undergoing retinal I/R and receiving LM11A-31 was assessed by visual-clue water-maze test. I/R significantly increased the number of acellular capillaries (3.2-Fold) in WT retinas, which was partially ameliorated in p75 retinas. GFP-MSCs were successfully incorporated and engrafted into retinal vasculature 1 week post injection and normalized the number of acellular capillaries in p75 retinas, yet ischemic WT retinas maintained a 2-Fold increase. Silencing p75 on GFP-MSCs coincided with a higher number of cells homing to the ischemic WT retinal vasculature and normalized the number of acellular capillaries when compared to ischemic WT retinas receiving scrambled-GFP-MSCs. In vitro, silencing p75-MSCs enhanced their secretome, as evidenced by significant increases in SDF-1, VEGF and NGF release in MSCs conditioned medium; improved paracrine angiogenic response in HREs, where HREs showed enhanced migration (1.4-Fold) and tube formation (2-Fold) compared to controls. In parallel, modulating MSCs-p75 using LM11A-31 resulted in a similar improvement in MSCs secretome and the enhanced paracrine angiogenic potential of HREs. Further, intervention with LM11A-31 significantly mitigated the decline in visual acuity post retinal I/R injury. In conclusion, p75 modulation can potentiate the therapeutic potential of MSCs to harness vascular repair in ischemic retinopathy diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830385PMC
http://dx.doi.org/10.3390/ijms22020829DOI Listing

Publication Analysis

Top Keywords

acellular capillaries
16
number acellular
12
mesenchymal stem
8
stem cells
8
vascular protection
8
vascular repair
8
ischemic retinopathy
8
i/r injury
8
angiogenic response
8
retinal i/r
8

Similar Publications

The promise of injection of extracellular matrix (ECM) from animal hearts as a treatment of myocardial ischemia has been limited by immune reactions and harsh ECM-damaging extraction procedures. We developed a novel method to produce lab-grown human three-dimensional (3-D) acellular ECM particles from human mesenchymal stem cells (MSCs) to mitigate product variability, immunogenicity, and preserve ECM architecture. We hypothesized that intramyocardial injection (I/M) of this novel ECM (dia ∼ 200 microns) would improve cardiac function in a postmyocardial infarction (MI) murine model.

View Article and Find Full Text PDF

Impaired function of the retinal neurovascular unit (NVU) is an early event in diabetic retinopathy (DR). It has been previously shown that topical delivery of the dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin can protect against diabetes-mediated dysfunction of the retinal NVU in the db/db mouse. The aim of the present study was to examine whether sitagliptin could prevent the DR-like lesions within the NVU of the new non-diabetic model of DR, the Trpv2 knockout rat (Trpv2).

View Article and Find Full Text PDF
Article Synopsis
  • Developed a method for creating tissue models with a complex, multiscale vessel network embedded in acellular hydrogel to study vascular processes.
  • The system allows controlled fluid flow through the network and facilitates cell migration and endothelial growth without interference.
  • Designed for ease of use, this method aims to support research in vascular biology by being compatible with organoid cultures and bioprinting technologies.
View Article and Find Full Text PDF

Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR.

View Article and Find Full Text PDF

Unfortunately, during pathological conditions resulting in chronic hemolysis cell-free hemoglobin (Hb) is released into the circulation that releases free heme, resulting in several complications. One approach to prevent these toxicities is the administration of supplemental scavenger proteins, haptoglobin (Hp) and hemopexin (Hpx). The goal of this body of work is to objectively measure the levels of vascular reactivity and inflammatory profiles after an infusion of acellular hemoglobin in animals that were given a coadministration of PEGylated human apohemoglobin (PEG-apoHb), a hemopexin (Hpx)-mimetic that can scavenge free heme from hemoglobin, together with human plasma-derived Hp that can scavenge dimerized Hb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!