Power plants based on solar energy are spreading to accomplish the incoming green energy transition. Besides, affordable high-temperature sensible heat thermal energy storage (SHTES) is required. In this work, the temperature distribution and thermal performance of novel solid media for SHTES are investigated by finite element method (FEM) modelling. A geopolymer, with/without fibre reinforcement, is simulated during a transient charging/discharging cycle. A life cycle assessment (LCA) analysis is also carried out to investigate the environmental impact and sustainability of the proposed materials, analysing the embodied energy, the transport, and the production process. A Multi-Criteria Decision Making (MCDM) with the Analytical Hierarchy Process (AHP) approach, taking into account thermal/environmental performance, is used to select the most suitable material. The results show that the localized reinforcement with fibres increases thermal storage performance, depending on the type of fibre, creating curvatures in the temperature profile and accelerating the charge/discharge. High-strength, high-conductivity carbon fibres performed well, and the simulation approach can be applied to any fibre arrangement/material. On the contrary, the benefit of the fibres is not straightforward according to the three different scenarios developed for the LCA and MCDM analyses, due to the high impact of the fibre production processes. More investigations are needed to balance and optimize the coupling of the fibre material and the solid medium to obtain high thermal performance and low impacts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830492 | PMC |
http://dx.doi.org/10.3390/ma14020414 | DOI Listing |
Sci Rep
December 2024
School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
The welding of titanium alloys is an important topic in today's industrial field, and the interaction between the solder and the base material is crucial for the quality of the welded parts. The structural, elastic, electronic, and thermal properties of Ti-Al-Me (Me = Cu, Fe and Ni) alloys (TAMs) with the face-centered cubic structures were investigated using plane-wave pseudo potential method in the framework of density functional theory. Based on the calculated elastic constants combined with empirical and semi-empirical formulas, physical properties including ductility/brittleness, hardness and anisotropy were calculated.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Nuclear and Engineering Nonproliferation Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Monitoring nuclear reactor operations is vital for nuclear safeguards as it ensures that reactors are in compliance with international legal agreements. Validating nuclear facilities and activities, including potential clandestine activities, is currently accomplished by using remotely sensed data from satellites and aircrafts and on-site sampling. However, these techniques are temporally-limited as sampling and interpretation of environmental releases frequently involve labor-intensive, on-site collections.
View Article and Find Full Text PDFNature
December 2024
Yale University, Department of Earth and Planetary Sciences, New Haven, CT, USA.
Atmospheric rivers (ARs) are narrow regions of intense water vapour transport in the Earth's atmosphere. These transient phenomena carry water from the subtropics to the mid-latitudes and polar regions, making up the majority of polewards moisture transport and exerting control on the precipitation and water resources in many regions. In addition to transporting moisture, ARs also transport heat, but the impact of this transport on global near-surface air temperatures has not yet been characterized.
View Article and Find Full Text PDFPhys Rev E
November 2024
Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208106, India.
The hydrodynamic and thermal interactions between neighboring vapor bubbles on hot surfaces play a crucial role in heat transport and flow characteristics. To investigate these interactions, we conducted numerical simulations of saturated vapor bubbles in a two-dimensional square enclosure filled with liquid water. The water was heated at the bottom and cooled at the top to replicate boiling at 100^{∘}C and normal atmospheric pressure.
View Article and Find Full Text PDFMater Horiz
December 2024
Institute of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
Buildings, especially installed windows, account for a large proportion of global energy consumption. The research trend of smart windows leans towards multi-functional integration, concurrently achieving solar modulation and thermal management. However, sometimes a one-time performance switch cannot meet demands, making the design of multi-gradient adjustable smart windows particularly important.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!