A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An In-Vitro Analysis of Peri-Implant Mucosal Seal Following Photofunctionalization of Zirconia Abutment Materials. | LitMetric

An In-Vitro Analysis of Peri-Implant Mucosal Seal Following Photofunctionalization of Zirconia Abutment Materials.

Biomedicines

Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur 50603, Malaysia.

Published: January 2021

The presence of epithelial and connective tissue attachment at the peri-implant-soft tissue region has been demonstrated to provide a biological barrier of the alveolar bone from the oral environment. This barrier can be improved via surface modification of implant abutment materials. The effect of photofunctionalization on creating a bioactive surface for the enhancement of the epithelial and connective tissue attachment of zirconia implant abutment's peri-implant mucosal interface using organotypic model has not been investigated. Therefore, this study aimed to evaluate the soft tissue seal around peri-implant mucosa and to understand the effect of photofunctionalization on the abutment materials. Three types of abutment materials were used in this study; yttria-stabilized zirconia (YSZ), alumina-toughened zirconia, and grade 2 commercially pure titanium (CPTi) which were divided into nontreated (N-Tx) and photofunctionalized group (UV-Tx). The three-dimensional peri-implant mucosal model was constructed using primary human gingival keratinocytes and fibroblasts co-cultured on the acellular dermal membrane. The biological seal was determined through the concentration of tritiated water permeating the material-soft tissue interface. The biological seal formed by the soft tissue in the N-Tx group was significantly reduced compared to the UV-treated group ( < 0.001), with YSZ exhibiting the lowest permeability among all materials. Photofunctionalization of implant abutment materials improved the biological seal of the surrounding soft tissue peri-implant interface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830892PMC
http://dx.doi.org/10.3390/biomedicines9010078DOI Listing

Publication Analysis

Top Keywords

abutment materials
20
peri-implant mucosal
12
soft tissue
12
biological seal
12
epithelial connective
8
connective tissue
8
tissue attachment
8
implant abutment
8
materials photofunctionalization
8
tissue
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!