The bottom-up design of smart nanodevices largely depends on the accuracy by which each of the inherent nanometric components can be functionally designed with predictive methods. Here, we present a rationally designed, self-assembled nanochip capable of capturing a target protein by means of pre-selected binding sites. The sensing elements comprise computationally evolved peptides, designed to target an arbitrarily selected binding site on the surface of beta-2-Microglobulin (β2m), a globular protein that lacks well-defined pockets. The nanopatterned surface was generated by an atomic force microscopy (AFM)-based, tip force-driven nanolithography technique termed nanografting to construct laterally confined self-assembled nanopatches of single stranded (ss)DNA. These were subsequently associated with an ssDNA-peptide conjugate by means of DNA-directed immobilization, therefore allowing control of the peptide's spatial orientation. We characterized the sensitivity of such peptide-containing systems against β2m in solution by means of AFM-based differential topographic imaging and surface plasmon resonance (SPR) spectroscopy. Our results show that the confined peptides are capable of specifically capturing β2m from the surface-liquid interface with micromolar affinity, hence providing a viable proof-of-concept for our approach to peptide design.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831021PMC
http://dx.doi.org/10.3390/ijms22020812DOI Listing

Publication Analysis

Top Keywords

nanopatterned surface
8
capable capturing
8
computational evolution
4
evolution beta-2-microglobulin
4
beta-2-microglobulin binding
4
binding peptides
4
peptides nanopatterned
4
surface
4
surface sensors
4
sensors bottom-up
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!