The bottom-up design of smart nanodevices largely depends on the accuracy by which each of the inherent nanometric components can be functionally designed with predictive methods. Here, we present a rationally designed, self-assembled nanochip capable of capturing a target protein by means of pre-selected binding sites. The sensing elements comprise computationally evolved peptides, designed to target an arbitrarily selected binding site on the surface of beta-2-Microglobulin (β2m), a globular protein that lacks well-defined pockets. The nanopatterned surface was generated by an atomic force microscopy (AFM)-based, tip force-driven nanolithography technique termed nanografting to construct laterally confined self-assembled nanopatches of single stranded (ss)DNA. These were subsequently associated with an ssDNA-peptide conjugate by means of DNA-directed immobilization, therefore allowing control of the peptide's spatial orientation. We characterized the sensitivity of such peptide-containing systems against β2m in solution by means of AFM-based differential topographic imaging and surface plasmon resonance (SPR) spectroscopy. Our results show that the confined peptides are capable of specifically capturing β2m from the surface-liquid interface with micromolar affinity, hence providing a viable proof-of-concept for our approach to peptide design.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7831021 | PMC |
http://dx.doi.org/10.3390/ijms22020812 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!