The traditional cone penetration test system uses cable to transmit data; as the probe goes deeper into the ground, the length of the cable will become longer. This makes the installation of the test equipment more complicated, and excessively long cables cause signal distortion and seriously affect data accuracy. To simplify the experimental equipment and improve the accuracy of data acquisition, a cableless cone penetration test system is proposed. The improved system uses an SD card to store the experimental data, as opposed to using cables for communication which, often lead to the distortion of signals caused by long-distance communication and data loss caused by accidental cable breaks. Therefore, the accuracy of the collected data is higher, and the experimental device is simplified. To evaluate the applicability and efficiency of our design, we have carried out exploration experiments with the sensor system proposed in this paper. The test results show that the experimental data collected by the new system are basically consistent with the data collected by traditional cable CPT equipment, and the accuracy of the collected data is higher. It is more reliable and accurate to analyze the comprehensive mechanical properties of the soil layers with the data collected by the new system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830836 | PMC |
http://dx.doi.org/10.3390/s21020575 | DOI Listing |
Sci Rep
January 2025
School of Civil Engineering and Architecture, Henan University, Kaifeng, 475004, China.
Soil classification and analysis are essential for understanding soil properties and serve as a foundation for various engineering projects. Traditional methods of soil classification rely heavily on costly and time-consuming laboratory and in-situ tests. In this study, Support Vector Machine (SVM) models were trained for soil classification using 649 Cone Penetration Test (CPT) datasets, specifically utilizing cone tip resistance ([Formula: see text]) and sleeve friction ([Formula: see text]) as input variables.
View Article and Find Full Text PDFSci Rep
December 2024
School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China.
Microtextured microneedles are tiny needle-like structures with micron-scale microtextures, and the drugs stored in the microtextures can be released after entering the skin to achieve the effect of precise drug delivery. In this study, the skin substitution model of Ogden's hyperelastic model and the microneedle array and microtexture models with different geometrical parameters were selected to simulate and analyse the flow of the microtexture microneedle arrays penetrating the skin by the finite-element method, and the length of the microneedles was determined to be 200 μm, the width 160 μm, and the value of the gaps was determined to be 420 μm. A four-pronged cone was chosen as the shape of microneedles, and a rectangle was chosen as the shape of the drug-carrying microneedle.
View Article and Find Full Text PDFDent J (Basel)
December 2024
Faculty of Dentistry, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.
Adhesion within endodontic obturation material and root canal walls improves the efficacy of the endodontic treatment by establishing a barrier that inhibits reinfection and entombs residual bacteria. This study evaluates the push-out bond strength (POBS) of calcium silicate sealers compared to an epoxy-resin-based sealer. A total of 36 extracted mono-radicular teeth were prepared with Pro Taper Ultimate and irrigated with 5.
View Article and Find Full Text PDFDent J (Basel)
November 2024
Department of Prosthetic Dental Science, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia.
: This study aimed to investigate the fracture strength of a novel-designed Zirconia crown before and after access opening, and to evaluate the mode of fracture and the time needed for initial penetration through the crown. : This study involved the design and testing of 60 zirconia crowns, divided into three groups (20 crowns each) to compare different structural designs. Group 1 (Control) used a conventional full zirconia crown.
View Article and Find Full Text PDFProc Inst Mech Eng H
December 2024
The 2nd Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P. R. China.
This paper creates 3D models of Kitchon Root Controlled Auxiliary Archwire (Kitchon-RCAA) with different material properties and assembles them onto the main archwire equipped with brackets. By setting different loading methods and conducting Finite Element Analysis (FEA), the range of Orthodontic Torque/Support Force (OT/SF) values can be obtained. From the obtained values, it can be seen that changes in material properties have a significant impact on the mechanical properties of Kitchon-RCAA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!