(1) Limited information exists on the prevalence of low energy availability (LEA) in collegiate team sports. The purpose of this study was to examine the prevalence of LEA in collegiate women soccer players. (2) Collegiate women soccer athletes ( = 18, height: 1.67 ± 0.05 m; body mass: 65.3 ± 7.9 kg; body fat %: 24.9 ± 5.6%) had their body composition and sport nutrition knowledge assessed in the pre-season. Energy availability was assessed mid-season using a 4-day dietary log and activity energy expenditure values from a team-based monitoring system. A validated screening tool was used to screen for LEA. (3) The screening tool classified 56.3% of athletes as at risk of LEA (<30 kcal/kg of FFM); however, the actual dietary intake identified 67% as LEA. Athletes identified as non-LEA consumed significantly more absolute ( = 0.040) and relative ( = 0.004) energy than LEA athletes. (4) There was a high prevalence of LEA among collegiate women soccer athletes. Although previously validated in women endurance athletes, the LEA screening tool was not effective in identifying those at risk of LEA in this sample of athletes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7804888 | PMC |
http://dx.doi.org/10.3390/jfmk5040096 | DOI Listing |
Semin Immunopathol
January 2025
Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre U. 9, 1092, Budapest, Hungary.
Microtiter-plate-based systems are unified platforms of high-throughput experimentation (HTE). These polymeric devices are used worldwide on a daily basis-mainly in the pharmaceutical industry-for parallel syntheses, reaction optimization, various preclinical studies and high-throughput screening methods. Accordingly, laboratory automation today aims to handle these commercially available multiwell plates, making developments focused on their modifications a priority area of modern applied research.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an 223300, China. Electronic address:
Catalytic depolymerization is a favorable option for the valorization of industrial lignin. In this study, a new strategy was demonstrated for the efficient reductive depolymerization of industrial lignin based on a complex solvent of choline chloride-lactic acid (ChCl-LA) DES integrated with ethanol and a C-supported N-doped niobium-based catalyst with industrial lignin as carbon source (NBC@N-LC). It was found that the introduction of ethanol significantly improved the conversion of industrial lignin in ChCl-LA.
View Article and Find Full Text PDFBiophys Chem
January 2025
Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India. Electronic address:
Quantitative characterization of protein conformational landscapes is a computationally challenging task due to their high dimensionality and inherent complexity. In this study, we systematically benchmark several widely used dimensionality reduction and clustering methods to analyze the conformational states of the Trp-Cage mini-protein, a model system with well-documented folding dynamics. Dimensionality reduction techniques, including Principal Component Analysis (PCA), Time-lagged Independent Component Analysis (TICA), and Variational Autoencoders (VAE), were employed to project the high-dimensional free energy landscape onto 2D spaces for visualization.
View Article and Find Full Text PDFPlants (Basel)
January 2025
State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
Phosphorus (P) is an essential nutrient for rice growth, and the presence of phosphate-solubilizing bacteria (PSB) is an effective means to increase soil P content. However, the direct application of PSB may have minimal significance due to their low survival in soil. Biochar serves as a carrier that enhances microbial survival, and its porous structure and surface characteristics ensure the adsorption of .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!