The Spectral X-ray Imaging Data Acquisition (SpeXIDAQ) Framework.

Sensors (Basel)

Radiation Physics Research Group-UGCT, Department of Physics and Astronomy, Ghent University, Proeftuinstraat 86/N12, B-9000 Ghent, Belgium.

Published: January 2021

Photon counting X-ray imagers have found their way into the mainstream scientific community in recent years, and have become important components in many scientific setups. These camera systems are in active development, with output data rates increasing significantly with every new generation of devices. A different class of PCD (Photon Counting Detector) devices has become generally available, where camera data output is no longer a matrix of photon counts but instead direct measurements of the deposited charge per pixel in every frame, which requires significant off-camera processing. This type of PCD, called a hyperspectral X-ray camera due to its fully spectroscopic output, yet again increases the demands put on the acquisition and processing backend. Not only are bandwidth requirements increased, but the need to do extensive data processing is also introduced with these hyperspectral PCD devices. To cope with these new developments the Spectral X-ray Imaging Data Acquisition framework (SpeXIDAQ) has been developed. All aspects of the imaging pipeline are handled by the SpeXIDAQ framework: from detector control and frame grabbing, to processing, storage and live visualisation during experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829753PMC
http://dx.doi.org/10.3390/s21020563DOI Listing

Publication Analysis

Top Keywords

spectral x-ray
8
x-ray imaging
8
imaging data
8
data acquisition
8
spexidaq framework
8
photon counting
8
data
5
acquisition spexidaq
4
framework photon
4
counting x-ray
4

Similar Publications

Spectral CT-based nomogram for evaluation of neoadjuvant chemotherapy response in esophageal squamous cell carcinoma.

Eur Radiol

December 2024

Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Key Laboratory of Digestive Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.

Objectives: To establish a spectral CT-based nomogram for predicting the response to neoadjuvant chemotherapy (NAC) in patients with locally advanced esophageal squamous cell carcinoma (ESCC).

Methods: This retrospective study included 172 patients with ESCC who underwent spectral CT scans before NAC followed by resection. Based on postoperative tumor regression grades (TRG), 34% (58) of patients were responsive (TRG1) and 66% (114) were non-responsive (TRG2-3).

View Article and Find Full Text PDF

This work implements a mid-level data fusion methodology on spectral data from handheld X-ray fluorescence and laser-induced breakdown spectroscopy analyzers to quantify plutonium surrogate (CeO) contamination in soil samples for the first time. Spectral data from each analyzer were used independently to train supervised machine learning regressions to predict Ce concentration. Fused features from both data sets were then used to train the same models, comparing prediction performance by evaluating model precision and sensitivity.

View Article and Find Full Text PDF

The lack of effective treatments for dry age-related macular degeneration (AMD) is in part due to a lack of a preclinical animal model that recapitulates features of the clinical state including macular retinal pigment epithelium (RPE) degeneration, also known as geographic atrophy (GA). A nonhuman primate model of GA was developed and its responsiveness to an approved treatment, avacincaptad pegol (ACP), a complement C5 inhibitor, was evaluated. Intravitreal (ivt) administration of sodium iodate (SI) into one eye of male Macaca fascicularis leads to retinal areas (mm) of hyper- or hypo-autofluorescence.

View Article and Find Full Text PDF

Introduction: Annual screening for hydroxychloroquine (HCQ) retinopathy is recommended, and electroretinography (ERG) is considered a gold-standard test, but there are screening shortfalls and standard ERG is burdensome and has limited availability. Newer, portable ERG devices using skin-based electrodes may increase screening capacity but need validation. This study aims to determine initial device accuracies and feasibility of further research.

View Article and Find Full Text PDF

Sensitive detection of incident acoustic waves over a broad frequency band offers a faithful representation of photoacoustic pressure transients of biological microstructures. Here, we propose a plasmon waveguide resonance sensor for responding to the photoacoustic impulses. By sequentially depositing Au, MgF, and SiO films on a coverslip, a composite waveguide layer produces a tightly confined optical evanescent field at the SiO-water interface with extremely strong electric field intensity, enabling the retrieval of photoacoustic signals with an estimated noise-equivalent-pressure (NEP) sensitivity of ∼92 Pa and a -6-dB bandwidth of ∼208 MHz.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!