Aquaporins comprise a large group of transmembrane proteins responsible for water transport, which is crucial for plant survival under stress conditions. Despite the vital role of aquaporins, nothing is known about this protein family in a commercially important horticultural plant, which is sensitive to drought stress. In the present study, attention is given to the molecular characterization of aquaporins in and their expression during drought stress and recovery. We identified four aquaporins: IwPIP1;4, IwPIP2;2, IwPIP2;7 and IwTIP4;1. All of them had conserved NPA motifs (Asparagine-Proline-Alanine), transmembrane helices (TMh), pore characteristics, stereochemical properties and tetrameric structure of holoprotein. Drought stress and recovery treatment affected the aquaporins expression in leaves, which was up- or downregulated depending on stress intensity. Expression of was the most affected of all analyzed aquaporins. At 15% and 5% soil moisture and recovery from 15% and 5% soil moisture, expression significantly decreased and increased, respectively. Aquaporins and had lower expression in comparison to , with moderate expression changes in response to drought and recovery, while expression was of significance only in recovered plants. Insight into the molecular structure of aquaporins expanded knowledge about plant aquaporins, while its expression during drought and recovery contributed to drought tolerance mechanisms and re-acclimation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829780 | PMC |
http://dx.doi.org/10.3390/plants10010154 | DOI Listing |
BMC Plant Biol
January 2025
Agrobiosciences Laboratory, College of Agriculture and Environmental Sciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
Drought is a significant environmental stressor that induces changes in the physiological, morphological, biochemical, and molecular traits of plants, ultimately resulting in reduced plant growth and crop productivity. Seaweed extracts are thought to be effective in mitigating the effects of drought stress on plants. In this study, we investigated the impact of crude extract (CE), and polysaccharides (PS) derived from the brown macroalgae Fucus spiralis (Heterokontophyta, Phaeophyceae) applied at 5% (v/v) and 0.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu 730020, China. Electronic address:
Alfalfa (Medicago sativa L.) is a prominent and distinct species within the pasture germplasm innovation industry. However, drought poses a substantial constraint on the yield and distribution of alfalfa by adversely affecting its growth.
View Article and Find Full Text PDFFoods
January 2025
Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland.
Ajowan () is an important spice in the food industry, as a well as a medicinal plant with remarkable antioxidant properties. In this study, its essential oil content, chemical composition, flavonoid content, phenolic content, and antioxidant capacity were evaluated under three irrigation regimes (50, 70, and 90% field capacity) and different amounts of nano silicon (0, 1.5, and 3 mM) in ten populations of ajowan.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Agricultural College, Hunan Agricultural University, Changsha 410128, China.
Plant growth and development require water, but excessive water hinders growth. Sesame ( L.) is an important oil crop; it is drought-tolerant but sensitive to waterlogging, and its drought tolerance has been extensively studied.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
In this study, the drought-responsive gene from barley was transferred to , and overexpression lines were obtained. The phenotypic characteristics of the transgenic plants, along with physiological indicators and transcription level changes of stress-related genes, were determined under drought treatment. Under drought stress, transgenic plants overexpressing exhibited enhanced drought tolerance and longer root lengths compared to wild-type plants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!