One of the current major challenges in implant therapy is to minimize marginal bone loss around implants, since it can trigger bacterial colonization of the implant's neck, leading to its failure. The present study aimed (1) to scientifically validate a new mathematical rule based on soft tissues thickness, for choosing the correct implant position with respect to the bone level, in order to provide a better tissue adaptation to the abutment/implant surface to avoid bacterial invasion, and (2) to apply this mathematical rule to the Biological Oriented Immediate Loading (B.O.I.L.) surgical protocol, avoiding peri-implant bone resorption. N. 127 implants were inserted following B.O.I.L. protocol: implants were placed according to the mathematical rule Y = X - 3, which correlates the position of the implant from the bone crest level (Y) with the thickness of the soft tissues (X). All the implants were inserted in fresh extraction sockets, and immediately loaded with temporary abutments and prostheses. Bone levels were evaluated through radiographic examination just after surgical procedure (T0), and after 10 days (10D), 6 months (6M), 1 year (1Y), and 5 years (5Y). After 5 years, the implant survival rate was 100%, with a medium marginal bone loss around implants of 0.0704 mm (SD = 0.169 mm). One-way ANOVA, followed by Tukey's multiple comparison test was performed for statistical evaluations ( < 0.05). This protocol provided a safe and successful procedure, with a good soft tissue seal against bacterial challenge. The application of the mathematical rule allows the implant placement in a correct vertical position from the bone crest, avoiding bone resorption and bacterial infiltrations. Moreover, the use of Multi Unit Abutment (MUA) determined a stable biological seal, favouring the implant healing and preserving the adhesion of hemidesmosomes to the titanium of MUA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830575PMC
http://dx.doi.org/10.3390/ma14020387DOI Listing

Publication Analysis

Top Keywords

mathematical rule
16
biological oriented
8
oriented loading
8
bone
8
marginal bone
8
bone loss
8
loss implants
8
soft tissues
8
bone resorption
8
implants inserted
8

Similar Publications

Objectives: Dementia, a growing concern globally, affects more than 55 million people-a number projected to rise to 152 million by 2050. Current medications target Alzheimer's disease, the most prevalent form of dementia. This study investigated L.

View Article and Find Full Text PDF

Background: Previous research paid more attention to the negative effects of the bullying on psychological distress, such as anxiety and depression. However, few studies explored the underlying mechanism between bullying and mathematics achievement. The purpose of this study was to explore the direct and indirect effects of school bullying on mathematics achievement among Chinese eighth grade students.

View Article and Find Full Text PDF

The most prevalent form of malignant tumors that originate in the brain are known as gliomas. In order to diagnose, treat, and identify risk factors, it is crucial to have precise and resilient segmentation of the tumors, along with an estimation of the patients' overall survival rate. Therefore, we have introduced a deep learning approach that employs a combination of MRI scans to accurately segment brain tumors and predict survival in patients with gliomas.

View Article and Find Full Text PDF

Replicator dynamics on heterogeneous networks.

J Math Biol

January 2025

Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.

Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.

View Article and Find Full Text PDF

Study on the Characterization of Physical, Mechanical, and Creep Properties of Masson Pine and Chinese Fir Wood Flour-Reinforced High-Density Polyethylene Composites.

Polymers (Basel)

December 2024

Special and Key Laboratory for Development and Utilization of Guizhou Superior Bio-Based Materials, Guizhou Minzu University, Guiyang 550025, China.

Improving the physical, mechanical, and creep properties of wood fiber-reinforced polymer composites is crucial for broadening their application prospect. In this research, seven types of high-density polyethylene (HDPE) composites reinforced with different mass ratios of Masson pine ( Lamb.) and Chinese fir [ (Lamb.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!