Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity. Mixed-matrix membranes, comprising a filler phase embedded into a polymer matrix, have emerged in an attempt to partly overcome some of the limitations of conventional polymer and inorganic membranes. Among them, membranes incorporating tubular fillers are new nanomaterials having the potential to transcend Robeson's upper bound. Aligning nanotubes in the host polymer matrix in the permeation direction could lead to a significant improvement in membrane permeability. However, although much effort has been devoted to experimentally evaluating nanotube mixed-matrix membranes, their modelling is mostly based on early theories for mass transport in composite membranes. In this study, the effective permeability of mixed-matrix membranes with tubular fillers was estimated from the steady-state concentration profile within the membrane, calculated by solving the Fick diffusion equation numerically. Using this approach, the effects of various structural parameters, including the tubular filler volume fraction, orientation, length-to-diameter aspect ratio, and permeability ratio were assessed. Enhanced relative permeability was obtained with vertically aligned nanotubes. The relative permeability increased with the filler-polymer permeability ratio, filler volume fraction, and the length-to-diameter aspect ratio. For water-butanol separation, mixed-matrix membranes using polydimethylsiloxane with nanotubes did not lead to performance enhancement in terms of permeability and selectivity. The results were then compared with analytical prediction models such as the Maxwell, Hamilton-Crosser and Kang-Jones-Nair (KJN) models. Overall, this work presents a useful tool for understanding and designing mixed-matrix membranes with tubular fillers.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829890 | PMC |
http://dx.doi.org/10.3390/membranes11010058 | DOI Listing |
Chem Commun (Camb)
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
Mixed matrix membranes (MMMs) composed of metal-organic frameworks (MOFs) and polymer matrixes have garnered significant attention due to their potential to overcome the permeability-selectivity trade-off inherent in polymeric membranes. Nevertheless, the application and industrial production of MOF-based MMMs have been hindered by issues such as poor interfacial compatibility and cumbersome fabrication processes. Recently, strategies have emerged as promising approaches for fabricating MOF-based MMMs, offering enhanced interfacial compatibility between MOF fillers and polymers, as well as a simplified construction process.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, 414000 Hunan, P. R. China.
The high-temperature proton exchange membranes suffer from weak binding strength for phosphoric acid molecules, which seriously reduce the fuel cell efficiency, especially operation stability. Introduction of microporous material in the membrane can effectively reduce the leaching of phosphoric acid. However, due to the poor compatibility between the polymer and fillers, the membrane's performance significantly reduced at high fillers content.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.
Defective MOFs have been identified as promising candidates for efficient membrane-based separation applications. However, the utilization of defective MOFs in membrane gas separation is still in its infancy due primarily to the inefficient molecular differentiation induced by structural defects. Herein, we report a strategic combination of ionic liquid (IL) and defective UiO-66-NH MOF to ameliorate the CO/N selectivity within the highly permeable PIM-1 polymer.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, National Institute of Technology Nagaland, Chumukedima, Dimapur 797103, India.
An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore.
Metal-organic cages (MOCs) have been considered as emerging zero-dimensional (0D) porous fillers to generate molecularly homogeneous MOC-based membrane materials. However, the discontinuous pore connectivity and low filler concentrations limit the improvement of membrane separation performance. Herein, we propose the dimension augmentation of MOCs in membranes using three-dimensional (3D) supramolecular MOC networks as filler materials in mixed matrix membranes (MMMs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!