The gene encodes the α subunit of the voltage-gated Kv1.1 potassium channel that critically regulates neuronal excitability in the central and peripheral nervous systems. Mutations in have been classically associated with episodic ataxia type 1 (EA1), a movement disorder triggered by physical and emotional stress. Additional features variably reported in recent years include epilepsy, myokymia, migraine, paroxysmal dyskinesia, hyperthermia, hypomagnesemia, and cataplexy. Interestingly, a few individuals with neuromyotonia, either isolated or associated with skeletal deformities, have been reported carrying variants in the S2-S3 transmembrane segments of Kv1.1 channels in the absence of any other symptoms. Here, we have identified by whole-exome sequencing a novel de novo variant, T268K, in in a boy displaying recurrent episodes of neuromyotonia, muscle hypertrophy, and skeletal deformities. Through functional analysis in heterologous cells and structural modeling, we show that the mutation, located at the extracellular end of the S3 helix, causes deleterious effects, disrupting Kv1.1 function by altering the voltage dependence of activation and kinetics of deactivation, likely due to abnormal interactions with the voltage sensor in the S4 segment. Our study supports previous evidence suggesting that specific residues within the S2 and S3 segments of Kv1.1 result in a distinctive phenotype with predominant musculoskeletal presentation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829709PMC
http://dx.doi.org/10.3390/biomedicines9010075DOI Listing

Publication Analysis

Top Keywords

novel novo
8
skeletal deformities
8
segments kv11
8
kv11
5
musculoskeletal features
4
features ataxia
4
ataxia associated
4
associated novel
4
novo mutation
4
mutation impairing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!