Surface Reformation of Medical Devices with DLC Coating.

Materials (Basel)

Department of Electrical and Electronic Engineering, Tokyo Denki University, Tokyo 120-8551, Japan.

Published: January 2021

We evaluated the adhesion, friction characteristics, durability against bodily acids, sterilization, cleaning, and anti-reflection performance of diamond-like carbon (DLC) coatings formed as a surface treatment of intracorporeal medical devices. The major coefficients of friction during intubation in a living body in all environments were lower with DLC coatings than with black chrome plating. DLC demonstrated an adhesion of approximately 24 N, which is eight times stronger than that of black chrome plating. DLC-coated samples also showed significant stability without being damaged during acid immersion and high-pressure steam sterilization, as suggested by the results of durability tests. In addition, the coatings remained unpeeled in a usage environment, and there was no change in the anti-reflection performance of the DLC coatings. In summary, DLC coatings are useful for improving intracorporeal device surfaces and extending the lives of medical devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7829695PMC
http://dx.doi.org/10.3390/ma14020376DOI Listing

Publication Analysis

Top Keywords

dlc coatings
16
medical devices
12
anti-reflection performance
8
black chrome
8
chrome plating
8
dlc
6
coatings
5
surface reformation
4
reformation medical
4
devices dlc
4

Similar Publications

Precise and long-term electroanalysis at the single-cell level is crucial for the accurate diagnosis and monitoring of brain diseases. The reliable protection in areas outside the signal acquisition points at sharp ultramicroelectrode (UME) tips has a significant impact on the sensitivity, fidelity, and stability of intracellular neural signal recording. However, it is difficult for existing UMEs to achieve controllable exposure of the tip functional structure, which affects their ability to resist environmental interference and shield noise, resulting in unsatisfactory signal-to-noise ratio and signal fidelity of intracellular recordings.

View Article and Find Full Text PDF

Electrospun poly(ε-caprolactone) (PCL)-based scaffolds are widely used in tissue engineering. However, low cell adhesion remains the key drawback of PCL scaffolds. It is well known that nitrogen-doped diamond-like carbon (N-DLC) coatings deposited on the surface of various implants are able to enhance their biocompatibility and functional properties.

View Article and Find Full Text PDF

The potential of diamond-like carbon coatings in medicine can be increased by doping them with various elements. Such modifications especially affect the biological properties of the synthetized films. In the following research, phosphorus was introduced into the carbon matrix by means of the chemical vapor deposition technique and using an organic precursor.

View Article and Find Full Text PDF

Diamond-Like Carbon (DLC), a thin-film material, is emerging as a promising alternative for durable surfaces due to its eco-friendly application process. This study evaluated the use of thin-film DLC on the wafer surface of gravure cylinders for roll-to-roll printing of fine-line electrodes and microtext patterns, specifically for applications in flexible electronics and graphics security. Results suggested that using thin film DLC on the wafer surface allows reliable reproduction of isometric grids and line structures with widths of 15, 20, and 30 µm, as well as solid electrodes.

View Article and Find Full Text PDF
Article Synopsis
  • During petroleum drilling, wear from reciprocating motion in seal devices can lead to leakage, making it important to select suitable materials for the piston and sleeve to extend their lifespan.
  • Lab tests simulated the friction and wear properties of different piston and sleeve materials, revealing that DLC coatings provided superior anti-wear performance compared to QPQ nitriding.
  • The study's findings emphasize the importance of material selection and surface treatments in enhancing the durability of sealing devices in oil drilling applications.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!