The CO separation from flue gas based on membrane technology has drawn great attention in the last few decades. In this work, polyetherimide (PEI) hollow fibers were fabricated by using a dry-jet-wet spinning technique. Subsequently, the composite hollow fiber membranes were prepared by dip coating of polydimethylsiloxane (PDMS) selective layer on the outer surface of PEI hollow fibers. The hollow fibers spun from various spinning conditions were fully characterized. The influence of hollow fiber substrates on the CO/N separation performance of PDMS/PEI composite membranes was estimated by gas permeance and ideal selectivity. The prepared composite membrane where the hollow fiber substrate was spun from 20 wt% of dope solution, 12 mL/min of bore fluid (water) flow rate exhibited the highest ideal selectivity equal to 21.3 with CO permeance of 59 GPU. It was found that the dope concentration, bore fluid flow rate and bore fluid composition affect the porous structure, surface morphology and dimension of hollow fibers. The bore fluid composition significantly influenced the gas permeance and ideal selectivity of the PDMS/PEI composite membrane. The prepared PDMS/PEI composite membranes possess comparable CO/N separation performance to literature ones.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828792PMC
http://dx.doi.org/10.3390/membranes11010056DOI Listing

Publication Analysis

Top Keywords

hollow fiber
20
hollow fibers
16
bore fluid
16
pei hollow
12
co/n separation
12
pdms/pei composite
12
ideal selectivity
12
hollow
9
fiber substrate
8
fiber membranes
8

Similar Publications

In this study, kapok fiber (KF) a hollow and hydrophobic fiber, was modified with cetyltrimethylammonium bromide (CTAB) or cetylpyridinium chloride (CPC), rendering adsorbed amount of ∼0.75 × 10 mol/g. Small-angle X-ray scattering (SAXS) measurements of dry KF/CTAB and KF/CPC evidenced a periodic distance of ∼2.

View Article and Find Full Text PDF

Background: MDR Gram-negative bacteria, such as ESBL-producing and carbapenemase-producing Klebsiella pneumoniae, represent major global health threats. Treatment options are limited due to increasing resistance and slowed development of novel antimicrobials, making it necessary to apply effective combination therapies based on approved antibiotics.

Objectives: To quantitatively evaluate the synergistic potential of meropenem and fosfomycin against carbapenem-resistant K.

View Article and Find Full Text PDF

Background Aims: The need for large-scale production of mesenchymal stromal cell (MSC)-based cellular therapeutics continues to grow around the globe. Manual cell expansion processes can be highly variable between operators, require significant hands-on time from skilled staff and, because of the large number of open manipulation steps required to produce cells in dose-relevant quantities, be prone to greater risk of contamination relative to automated processes. All of these can increase overall production costs and risks to the patient.

View Article and Find Full Text PDF

This study introduces a green approach to sample preparation by applying natural deep eutectic solvents (NADES) to determine phthalates in carbonated soft drinks using high-performance liquid chromatography with diode array detector (HPLC-DAD). The method employs hollow fiber-microporous membrane liquid-liquid microextraction combined with a 96-well plate system, utilizing fatty-acid-based DES in the pores of the membranes. This methodology substantially reduces the use of organic solvents, and its efficiency is comparable to or better than conventional methods.

View Article and Find Full Text PDF

Preparation of cellulose-based fluorescent aggregations with various morphologies and their microstructure-correlated fluorescence behavior.

Int J Biol Macromol

December 2024

School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China; Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Ministry of Education, Xi'an 710048, Shaanxi, China. Electronic address:

We provided an efficient method for preparing fluorescent materials with high specificity. Firstly, the cellulose-based aggregations with adjustable morphologies and sizes were obtained by cross-linking copolymerization and self-assembly. Then, after encapsulating the fluorescein isothiocyanate (FITC) into the hydrophobic microregions of the cellulose-based aggregations by ultrasound/dialysis method, a series of cellulose-based fluorescent aggregations with different morphologies was obtained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!