Oxide inverse opals (IOs) with their high surface area and open porosity are promising candidates for catalyst support applications. Supports with confined mesoporous domains are of added value to heterogeneous catalysis. However, the fabrication of IOs with mesoporous or sub-macroporous voids (<100 nm) continues to be a challenge, and the diffusion of tracers in quasi-mesoporous IOs is yet to be adequately studied. In order to address these two problems, we synthesized ZnO IOs films with tunable pore sizes using chemical bath deposition and template-based approach. By decreasing the size of polystyrene (PS) template particles towards the mesoporous range, ZnO IOs with 50 nm-sized pores and open porosity were synthesized. The effect of the template-removal method on the pore geometry (spherical vs. gyroidal) was studied. The infiltration depth in the template was determined, and the factors influencing infiltration were assessed. The crystallinity and photonic stop-band of the IOs were studied using X-Ray diffraction and UV-Vis, respectively. The infiltration of tracer molecules (Alexa Fluor 488) in multilayered quasi-mesoporous ZnO IOs was confirmed via confocal laser scanning microscopy, while fluorescence correlation spectroscopy analysis revealed two distinct diffusion times in IOs assigned to diffusion through the pores (fast) and adsorption on the pore walls (slow).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828802 | PMC |
http://dx.doi.org/10.3390/nano11010196 | DOI Listing |
Materials (Basel)
December 2024
Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, University Campus, 15784 Athens, Greece.
The rational design of photonic crystal photocatalysts has attracted significant interest in order to improve their light harvesting and photocatalytic performances. In this work, an advanced approach to enhance slow light propagation and visible light photocatalysis is demonstrated for the first time by integrating a planar defect into CoO-TiO inverse opals. Trilayer photonic crystal films were fabricated through the successive deposition of an inverse opal TiO underlayer, a thin titania interlayer, and a photonic top layer, whose visible light activation was implemented through surface modification with CoO nanoscale complexes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Physical Metallurgy, Metal Forming and Nanotechnology, University of Miskolc, H-3515 Miskolc, Hungary.
We demonstrate the band gap programming of inverse opals by fabrication of different wall thickness by atomic layer deposition (ALD). The opal templates were synthesized using polystyrene and carbon nanospheres by the vertical deposition method. The structure and properties of the TiO inverse opal samples were investigated using Scanning Electron Microscope (SEM) and Focused Ion Beam Scanning Electron Microscopy (FIB-SEM), Energy Dispersive X-ray analysis (EDX), X-ray Diffraction (XRD) and Finite Difference Time Domain (FDTD) simulations.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russian Federation.
J Colloid Interface Sci
January 2025
BK21 Four R&E Center, Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea. Electronic address:
Uniform and crack-free TiO inverse opal thin-films were successfully fabricated by simple template immersion method in pre-hydrolyzed TiCl precursor solution even though it is difficult to fabricate crack-free inverse opals through conventional solution drop-casting sol-gel process. Here, mechanically robust polystyrene (PS) colloidal crystal template in which PS particles are linked by polyvinylpyrrolidone bridges, were immersed in pre-hydrolyzed TiCl precursor solution to infiltrate the templates without inducing defects. By repeated soaking and drying process, and subsequent calcination, non-uniform and crack defects-free TiO inverse opal thin-films were fabricated reproducibly because PS templates immersed in the precursor solution experienced consistent fluid flow into their pores at uniform precursor concentration together with suppressed capillary pressure during drying as a result of low infiltration rate per cycle.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2024
Hamburg University of Technology (TUHH), Institute of Advanced Ceramics, Integrated Materials Systems Group, Denickestraße 15, 21073 Hamburg, Germany.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!