We report the emergence of an isolate belonging to the sequence type (ST)131- high-risk clone with ceftazidime-avibactam resistance recovered from a patient with bacteremia in 2019. Antimicrobial susceptibility was determined and whole genome sequencing (Illumina-NovaSeq6000) and cloning experiments were performed to investigate its resistance phenotype. A KPC-3-producing isolate susceptible to ceftazidime-avibactam (MIC = 0.5/4 mg/L) and with non-wild type MIC of meropenem (8 mg/L) was detected in a blood culture performed at hospital admission. Following 10-days of standard ceftazidime-avibactam dose treatment, a second KPC-producing isolate with a phenotype resembling an extended-spectrum β-lactamase (ESBL) producer (meropenem 0.5 mg/L, piperacillin-tazobactam 16/8 mg/L) but resistant to ceftazidime-avibactam (16/4 mg/L) was recovered. Both isolates belonged to ST131, serotype O25:H4 and sublineage H30R1. Genomics analysis showed a genome of 5,203,887 base pair with an evolutionary distance of 6 single nucleotide polymorphisms. A high content of resistance and virulence genes was detected in both isolates. The novel KPC-49 variant, an Arg-163-Ser mutant of , was detected in the isolate with resistance to ceftazidime-avibactam. Cloning experiments revealed that gene increases ceftazidime-avibactam MIC and decreases carbapenem MICs when using a porin deficient strain as a host. Both and genes were located on the transposon Tna as a part of an IncF [F1:A2:B20] plasmid. The emergence of novel genes conferring decreased susceptibility to ceftazidime-avibactam and resembling ESBL production in the epidemic ST131-H30R1- high-risk clone presents a new challenge in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7828710 | PMC |
http://dx.doi.org/10.3390/pathogens10010067 | DOI Listing |
Microb Pathog
January 2025
Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; School of Pharmacy, University of Jordan, Amman 11942, Jordan.
Unlabelled: The study investigated the resistome, virulome and mobilome of multidrug resistant (MDR) Klebsiella pneumoniae and Klebsiella oxytoca clinical isolates.
Methods: A total of 46 suspected Klebsiella species (spp.) were collected from blood cultures within the uMgungundlovu District in the KwaZulu-Natal Province.
Microbiol Spectr
January 2025
Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru.
The emergence of carbapenem-resistant (CRKP) poses a significant public health threat, particularly in low- and middle-income countries (LMICs) with limited surveillance and treatment options. This study examines the genetic diversity, resistance patterns, and transmission dynamics of 66 CRKP isolates recovered over 5 years (2015-2019) after the first case of CRKP was identified at a tertiary care hospital in Lima, Peru. Our findings reveal a shift from to as the dominant carbapenemase gene after 2017.
View Article and Find Full Text PDFCombined immune checkpoint blockade (ICB) and chemoradiation (CRT) is approved in patients with locally advanced cervical cancer (LACC) but optimal sequencing of CRT and ICB is unknown. NRG-GY017 (NCT03738228) was a randomized phase I trial of atezolizumab (anti-PD-L1) neoadjuvant and concurrent with CRT (Arm A) vs. concurrent with CRT (Arm B) in patients with high-risk node-positive LACC.
View Article and Find Full Text PDFInt J Med Microbiol
January 2025
Institute of Medical Microbiology, University Hospital Münster, Münster, Germany. Electronic address:
Background: Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a difficult to treat organism owing to limited therapeutic options. So far, little is known about the molecular characteristics of CRKP in Palestine.
Objectives: The aim of this study was to investigate the antimicrobial resistance patterns, multilocus sequence types (ST) and resistance genes among clinical K.
Blood
December 2024
The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States.
Significant progress in determining the molecular origins and resistance mechanisms of mantle cell lymphoma (MCL) has improved our understanding of the disease's clinical diversity. These factors greatly impact prognosis in MCL patients. Given the dynamic alterations in MCL clones and disease evolution, it is crucial to recognize high-risk prognostic factors at diagnosis and relapse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!