Ex Vivo Systems to Study Chondrogenic Differentiation and Cartilage Integration.

J Funct Morphol Kinesiol

AO Research Institute Davos, Clavadelerstrasse 8, CH-7270 Davos Platz, Switzerland.

Published: January 2021

Articular cartilage injury and repair is an issue of growing importance. Although common, defects of articular cartilage present a unique clinical challenge due to its poor self-healing capacity, which is largely due to its avascular nature. There is a critical need to better study and understand cellular healing mechanisms to achieve more effective therapies for cartilage regeneration. This article aims to describe the key features of cartilage which is being modelled using tissue engineered cartilage constructs and ex vivo systems. These models have been used to investigate chondrogenic differentiation and to study the mechanisms of cartilage integration into the surrounding tissue. The review highlights the key regeneration principles of articular cartilage repair in healthy and diseased joints. Using co-culture models and novel bioreactor designs, the basis of regeneration is aligned with recent efforts for optimal therapeutic interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7838775PMC
http://dx.doi.org/10.3390/jfmk6010006DOI Listing

Publication Analysis

Top Keywords

articular cartilage
12
vivo systems
8
chondrogenic differentiation
8
cartilage
8
cartilage integration
8
systems study
4
study chondrogenic
4
differentiation cartilage
4
integration articular
4
cartilage injury
4

Similar Publications

Inflammation models with the proinflammatory cytokine interleukin-1β (IL-1β) are widely used in the in vitro investigation of new therapeutic approaches for osteoarthritis (OA). The aim of this study was to systematically analyze the influence of IL-1β in a 3D chondral pellet culture model. Bovine articular chondrocytes were cultured to passage 3 and then placed in pellet culture.

View Article and Find Full Text PDF

Potential and challenges of utilizing exosomes in osteoarthritis therapy (Review).

Int J Mol Med

March 2025

Department of Joint Surgery, Sports Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi 710054, P.R. China.

Exosomes are integral to the pathophysiology of osteoarthritis (OA) due to their roles in mediating intercellular communication and regulating inflammatory processes. Exosomes are integral to the transport of bioactive molecules, such as proteins, lipids and nucleic acids, which can influence chondrocyte behavior and joint homeostasis. Given their properties of regeneration and ability to target damaged tissues, exosomes represent a promising therapeutic avenue for OA treatment.

View Article and Find Full Text PDF

Background: Continued advancements in cartilage surgery and an accumulating body of evidence warrants a contemporary synthesis of return to sport (RTS) outcomes to provide updated prognostic data and to better understand treatment response.

Purpose: To perform an updated systematic review of RTS in athletes after knee cartilage restoration surgery.

Study Design: Systematic review; Level of evidence, 4.

View Article and Find Full Text PDF

Background And Objective: Osteoarthritis (OA) is characterized by progressive cartilage degeneration mediated by various molecular pathways, including inflammatory and autophagic processes. SET domain-containing lysine methyltransferase 7 (SETD7), a methyltransferase, has been implicated in OA pathology. This study investigates the expression pattern of SETD7 in OA and its role in promoting interleukin-1 beta (IL-1β)-induced chondrocyte injury through modulation of autophagy and inflammation.

View Article and Find Full Text PDF

Background: Steroid-induced osteonecrosis of the femoral head (SIONFH) is a universal hip articular disease and is very hard to perceive at an early stage. The understanding of the pathogenesis of SIONFH is still limited, and the identification of efficient diagnostic biomarkers is insufficient. This research aims to recognize and validate the latent exosome-related molecular signature in SIONFH diagnosis by employing bioinformatics to investigate exosome-related mechanisms in SIONFH.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!