We consider three-dimensional higher-charge multicomponent lattice Abelian-Higgs (AH) models, in which a compact U(1) gauge field is coupled to an N-component complex scalar field with integer charge q, so that they have local U(1) and global SU(N) symmetries. We discuss the dependence of the phase diagram, and the nature of the phase transitions, on the charge q of the scalar field and the number N≥2 of components. We argue that the phase diagram of higher-charge models presents three different phases, related to the condensation of gauge-invariant bilinear scalar fields breaking the global SU(N) symmetry, and to the confinement and deconfinement of external charge-one particles. The transition lines separating the different phases show different features, which also depend on the number N of components. Therefore, the phase diagram of higher-charge models substantially differs from that of unit-charge models, which undergo only transitions driven by the breaking of the global SU(N) symmetry, while the gauge correlations do not play any relevant role. We support the conjectured scenario with numerical results, based on finite-size scaling analyses of Monte Carlo simuations for doubly charged unit-length scalar fields with small and large number of components, i.e., N=2 and N=25.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.062151DOI Listing

Publication Analysis

Top Keywords

global sun
12
phase diagram
12
lattice abelian-higgs
8
abelian-higgs models
8
scalar field
8
diagram higher-charge
8
higher-charge models
8
scalar fields
8
breaking global
8
sun symmetry
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!