Like genes and proteins, cells can use biochemical networks to sense and process information. The differentiation of the cell state in colonic crypts forms a typical unidirectional phenotypic transitional cascade, in which stem cells differentiate into the transit-amplifying cells (TACs), and TACs continue to differentiate into fully differentiated cells. In order to quantitatively describe the relationship between the noise of each compartment and the amplification of signals, the gain factor is introduced, and the gain-fluctuation relation is obtained by using the linear noise approximation of the master equation. Through the simulation of these theoretical formulas, the characters of noise propagation and amplification are studied. It is found that the transmitted noise is an important part of the total noise in each downstream cell. Therefore, a small number of downstream cells can only cause its small inherent noise, but the total noise may be very large due to the transmitted noise. The influence of the transmitted noise may be the indirect cause of colon cancer. In addition, the total noise of the downstream cells always has a minimum value. As long as a reasonable value of the gain factor is selected, the number of cells in colonic crypts will be controlled within the normal range. This may be a good method to intervene the uncontrollable growth of tumor cells and effectively control the deterioration of colon cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.062411DOI Listing

Publication Analysis

Top Keywords

transmitted noise
12
total noise
12
noise
10
cells
9
propagation amplification
8
colonic crypts
8
gain factor
8
noise total
8
noise downstream
8
downstream cells
8

Similar Publications

Objective: Conventional coherent plane wave compounding (CPWC) and sum-of-square power Doppler (PD) estimation lead to low contrast and high noise level in ultrafast PD imaging when the number of plane-wave angle and the ensemble length is limited. The coherence-based PD estimation using temporal-multiply-and-sum (TMAS) of high-lag autocorrelation can effectively suppress the uncorrelated noises but at the cost of signal power due to the blood flow decorrelation.

Methods: In this study, the TMAS PD estimation is incorporated with complementary subset transmit in nonlinear compounding (DMAS-CST) to leverage the signal coherence in both angular and temporal dimensions for improvement of PD image quality.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) is an invaluable method of choice for anatomical and functional in vivo imaging of the brain. Still, accurate delineation of the brain structures remains a crucial task of MR image evaluation. This study presents a novel analytical algorithm developed in MATLAB for the automatic segmentation of cerebrospinal fluid (CSF) spaces in preclinical non-contrast MR images of the mouse brain.

View Article and Find Full Text PDF

Application of PN Code in Time Delay Measurement of Telephone Network.

Sensors (Basel)

January 2025

National Time Service Center, Chinese Academy of Sciences, Xi'an 710600, China.

Telephone time service is a wired time service that transmits time signals through a telephone network, with the advantages of simple receiving equipment and wide coverage. But the performance of time service is not high, usually several milliseconds. The time delay measurement of the telephone network is an important factor limiting the improvement in timing performance.

View Article and Find Full Text PDF

Exploring in vivo human brain metabolism at 10.5 T: Initial insights from MR spectroscopic imaging.

Neuroimage

January 2025

Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA. Electronic address:

Introduction: Ultra-high-field magnetic resonance (MR) systems (7 T and 9.4 T) offer the ability to probe human brain metabolism with enhanced precision. Here, we present the preliminary findings from 3D MR spectroscopic imaging (MRSI) of the human brain conducted with the world's first 10.

View Article and Find Full Text PDF

Background: Cochlear implants (CIs) are neuroprosthetic devices which restore hearing in severe-to-profound hearing loss through electrical stimulation of the auditory nerve. Current CIs use an externally worn audio processor. A long-term goal in the field has been to develop a device in which all components are contained within a single implant.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!