Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We consider a general discrete state-space system with both unidirectional and bidirectional links. In contrast to bidirectional links, there is no reverse transition along the unidirectional links. Herein, we first compute the statistical length and the thermodynamic cost function for transitions in the probability space, highlighting contributions from total, environmental, and resetting (unidirectional) entropy production. Then we derive the thermodynamic bound on the speed limit to connect two distributions separated by a finite time, showing the effect of the presence of unidirectional transitions. Uncertainty relationships can be found for the temporal first and second moments of the average resetting entropy production. We derive simple expressions in the limit of slow unidirectional transition rates. Finally, we present a refinement of the thermodynamic bound by means of an optimization procedure. We numerically investigate these results on systems that stochastically reset with constant and periodic resetting rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevE.102.062121 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!