Dodge and survive: Modeling the predatory nature of dodgeball.

Phys Rev E

Department of Applied Mathematics, University of Colorado at Boulder, Boulder, Colorado 80309, USA.

Published: December 2020

The analysis of games and sports as complex systems can give insights into the dynamics of human competition and has been proven useful in soccer, basketball, and other professional sports. In this paper, we present a model for dodgeball, a popular sport in U.S. schools, and analyze it using an ordinary differential equation (ODE) compartmental model and stochastic agent-based game simulations. The ODE model reveals a rich landscape with different game dynamics occurring depending on the strategies used by the teams, which can in some cases be mapped to scenarios in competitive species models. Stochastic agent-based game simulations confirm and complement the predictions of the deterministic ODE models. In some scenarios, game victory can be interpreted as a noise-driven escape from the basin of attraction of a stable fixed point, resulting in extremely long games when the number of players is large. Using the ODE and agent-based models, we construct a strategy to increase the probability of winning.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevE.102.062302DOI Listing

Publication Analysis

Top Keywords

stochastic agent-based
8
agent-based game
8
game simulations
8
dodge survive
4
survive modeling
4
modeling predatory
4
predatory nature
4
nature dodgeball
4
dodgeball analysis
4
analysis games
4

Similar Publications

Introduction: Antimicrobial resistance (AMR) is a growing threat to the efficacy of antimicrobials in humans and animals, including those used to control bovine respiratory disease (BRD) in high-risk calves entering western Canadian feedlots. Successful mitigation strategies require an improved understanding of the epidemiology of AMR. Specifically, the relative contributions of antimicrobial use (AMU) and contagious transmission to AMR emergence in animal populations are unknown.

View Article and Find Full Text PDF

Random walks and related spatial stochastic models have been used in a range of application areas, including animal and plant ecology, infectious disease epidemiology, developmental biology, wound healing and oncology. Classical random walk models assume that all individuals in a population behave independently, ignoring local physical and biological interactions. This assumption simplifies the mathematical description of the population considerably, enabling continuum-limit descriptions to be derived and used in model analysis and fitting.

View Article and Find Full Text PDF

Replicator dynamics on heterogeneous networks.

J Math Biol

January 2025

Laboratory of Mathematics and Complex Systems, Ministry of Education, School of Mathematical Sciences, Beijing Normal University, Beijing, People's Republic of China.

Networked evolutionary game theory is a well-established framework for modeling the evolution of social behavior in structured populations. Most of the existing studies in this field have focused on 2-strategy games on heterogeneous networks or n-strategy games on regular networks. In this paper, we consider n-strategy games on arbitrary networks under the pairwise comparison updating rule.

View Article and Find Full Text PDF

Background: Clinical trials for assessing the effects of infection prevention and control (IPC) interventions are expensive and have shown mixed results. Mathematical models can be relatively inexpensive tools for evaluating the potential of interventions. However, capturing nuances between institutions and in patient populations have adversely affected the power of computational models of nosocomial transmission.

View Article and Find Full Text PDF

Calibration verification for stochastic agent-based disease spread models.

PLoS One

December 2024

Mechanical Engineering Department, University of California, Berkeley, Berkeley, California, United States of America.

Accurate disease spread modeling is crucial for identifying the severity of outbreaks and planning effective mitigation efforts. To be reliable when applied to new outbreaks, model calibration techniques must be robust. However, current methods frequently forgo calibration verification (a stand-alone process evaluating the calibration procedure) and instead use overall model validation (a process comparing calibrated model results to data) to check calibration processes, which may conceal errors in calibration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!