Antibacterial nanomaterials have attracted great interest in recent years, especially with an increase in antibiotic resistance of microbial organisms. However, deleterious properties such as aggregation, toxicity of nanoparticles, and low stability limit their practical application. In this respect, we have developed novel PLA-based fibrous mats with GO-Ag hybrid nanofillers through electrospinning for minimizing bacterial attachment and growth for biomedical applications. Polylactic acid (PLA) exhibits low tensile modulus and strength as well as no bactericidal ability. To enhance its tensile and bactericidal performances, 1 wt % graphene oxide (GO), and 1-7 wt % silver nanoparticle (AgNP) are incorporated into the PLA matrix. For comparison, electrospun PLA-1 wt % GO and PLA-AgNP nanocomposites have also been prepared. The morphological, mechanical and thermal properties as well as bactericidal activities of electrospun PLA-based nanocomposite fibrous mats have been investigated. Tensile tests show that the addition of 1 wt % GO or 1-7 wt % AgNPs to PLA leads to a drastic increase in its elastic modulus. Further enhancements in tensile modulus and strength of PLA can be obtained by adding GO-AgNP nanohybrids. The thermal stability of PLA is greatly improved by adding GO-AgNP nanohybrids. Agar disk diffusion test results indicate that the PLA-1 wt %GO nanocomposite has no inhibition zones against and . However, GO nanofillers with lateral width of micrometer range act as effective anchoring sites for AgNPs. Thus, PLA-1 wt %GO-(1-7) wt % Ag hybrid fibrous mats exhibit excellent antibacterial effect against , while the PLA-1 wt %GO-Ag mats with higher AgNP loadings show bacterial inhibition toward . The bactericidal effects of PLA-1 wt %GO-(1-7)%Ag hybrids are studied and analyzed using live/dead fluorescent imaging assay, quantitative antibacterial efficacy test, SEM examination and residual oxygen species measurement. Our work highlights the development of electrospun nanocomposite mats as promising antibacterial materials for biomedical applications and systematically depicts the bactericidal mechanism of PLA-GO-Ag nanocomposites.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.6b00766DOI Listing

Publication Analysis

Top Keywords

fibrous mats
12
nanocomposite mats
8
biomedical applications
8
tensile modulus
8
modulus strength
8
well bactericidal
8
adding go-agnp
8
go-agnp nanohybrids
8
mats
6
pla
5

Similar Publications

Evaluation of Sericin/Polyvinyl Alcohol Mixtures for Developing Porous and Stable Structures.

Biomimetics (Basel)

January 2025

Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.

Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.

View Article and Find Full Text PDF

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

An exceedingly porous and interwoven fibrous structure was achieved in this study by interlocking titanium carbide (TiC) MXenes onto the electrospun mats using poly(vinylidene fluoride) (PVDF) as the base polymer. The fibrous membrane was further modified with the inclusion of zinc oxide (ZnO) and tungstite (WO·HO) nano/microstructures via annealing and hydrothermal approaches. Through these strategic interfaced morphological developments in novel TiC/ZnO/WO·HO heterostructures, our findings reveal enhanced wettability and charge-segregation desirable for promoting oil-water separation and photoreactivity, respectively.

View Article and Find Full Text PDF

Alginate/gelatin blend fibers for functional high-performance air filtration applications.

Int J Biol Macromol

December 2024

Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey. Electronic address:

Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits.

View Article and Find Full Text PDF

In Situ Monitoring of Mechanofluorescence in Polymeric Nanofibers.

Macromol Rapid Commun

December 2024

Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, Bologna, 40126, Italy.

Mechanofluorescent polymers represent a promising class of materials exhibiting fluorescence changes in response to mechanical stimuli. One approach to fabricating these polymers involves incorporating aggregachromic dyes, whose emission properties are governed by the intermolecular distance, which can, in turn, be readily altered by microstructural changes in the surrounding polymer matrix during mechanical deformation. In this study, a mechanofluorescent additive featuring excimer-forming oligo(p-phenylene vinylene) dyes (tOPV) is incorporated into electrospun polyurethane fibers, producing mats of fibers with diameters ranging from 300 to 700 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!