The objective of this study is to estimate hydraulic conductivities and biodegradation rate constants in a coal-tar contaminated aquifer by compound-specific isotope analysis (CSIA) and tracer-based (H-He) groundwater dating (TGD). In two observation wells downgradient from the contaminant source in situ biodegradation of o-xylene, toluene and naphthalene under sulfate-reducing redox conditions could be demonstrated using CSIA. Median biodegradation rate constants for o-xylene ranging between 0.08 and 0.22 a were estimated. By using tracer-based groundwater dating in these two wells, hydraulic conductivities could be also estimated, which are in a similar range as k-values derived from sieve analysis, a pumping test and a calibrated groundwater flow model. These results clearly demonstrate the applicability of tracer-based groundwater dating for the determination of in situ hydraulic conductivities in aquifers without pumping contaminated groundwater. Finally, a sensitivity analysis is performed using a Monte Carlo simulation. These results indicate high sensitivities of the assumed effective porosity for the estimation of the hydraulic conductivity and the selected isotope enrichment factor for the biodegradation rate constant, respectively. Conversely, the outcome also evidently demonstrates the main limitations of the novel combined isotope approach for a successful implementation of monitored natural attenuation (MNA) at such field sites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconhyd.2020.103757DOI Listing

Publication Analysis

Top Keywords

biodegradation rate
16
groundwater dating
16
rate constants
12
hydraulic conductivities
12
constants o-xylene
8
compound-specific isotope
8
isotope analysis
8
tracer-based groundwater
8
groundwater
6
quantifying biodegradation
4

Similar Publications

Background: Colorectal cancer (CRC) is characterized by poor responsiveness to immune evasion and immunotherapy. RNA 7-methylguanine (m7G) modification plays a key role in tumorigenesis. However, the mechanisms by which m7G-modified RNA metabolism affects tumor progression are not fully understood, nor is the contribution of m7G-modified RNA to the CRC immune microenvironment.

View Article and Find Full Text PDF

Objective: The objective of this study was to identify serum complement factor-based biomarkers indicative of clinical efficacy in patients with first-episode schizophrenia (SCZ) following treatment with aripiprazole.

Methods: The retrospective study cohort comprised 40 patients diagnosed with first-episode SCZ (SCZ group) and 40 healthy individuals (control group). Quantitative analyses were conducted on five complement factors, namely complement component 1 (C1), C2, C3, C4, and the 50% hemolytic complement (CH50).

View Article and Find Full Text PDF

Point-of-Care Potassium Measurement vs Artificial Intelligence-Enabled Electrocardiography for Hyperkalemia Detection.

Am J Crit Care

January 2025

Shih-Hua Lin is a professor, Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei.

Background: Hyperkalemia can be detected by point-of-care (POC) blood testing and by artificial intelligence- enabled electrocardiography (ECG). These 2 methods of detecting hyperkalemia have not been compared.

Objective: To determine the accuracy of POC and ECG potassium measurements for hyperkalemia detection in patients with critical illness.

View Article and Find Full Text PDF

Objective: To elucidate the association between the changes in intracellular metabolism in the early stage of B cell activation and systemic lupus erythematosus (SLE) pathogenesis.

Methods: CD19 or CD19CD27 (naïve) cells from the peripheral blood of healthy controls and lupus patients were cultured under different stimuli. The changes in intracellular metabolism and signalling pathways in these cells were evaluated.

View Article and Find Full Text PDF

Background/aim: Immune checkpoint blockade has achieved great success as a targeted immunotherapy for solid cancers. However, small molecules that inhibit programmed death 1/programmed death ligand 1 (PD-1/PD-L1) binding are still being developed and have several advantages, such as high bioavailability. Previously, we reported a novel PD-1/PD-L1-inhibiting small compound, SCL-1, which showed potent antitumor effects on PD-L1 tumors.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!