A Streptomyces globisporus strain kills Microcystis aeruginosa via cell-to-cell contact.

Sci Total Environ

Chongqing Key Laboratory of Bio-resource development for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China. Electronic address:

Published: May 2021

Cyanobacterial harmful algal blooms (CyanoHABs) bring economic loss, damage aquatic ecosystems, and produce cyanobacterial toxins that threaten human health. Algicidal bacteria as pathogens can expediate the decline of CyanoHABs. In this study, a Streptomyces globisporus strain (designated G9), isolated from soil near a eutrophic pond, showed high algicidal activity against Microcystis aeruginosa. Experimental results show that G9 preyed on Microcystis through cell-to-cell contact: (1) the hyphae of G9 killed cyanobacterial cells by twining around them, while cells beyond the reach of G9 hyphae were in normal shapes; (2) No algicides were detectable in the supernatant of G9 cultures or G9-Microcystis cocultures. The algicidal ratio of G9 to M. aeruginosa reached 96.7% after 6 days. G9 selectively killed the tested cyanobacterial strains, while it had only minor impacts on the growth of tested Chlorophyceae. Differential gene expression studies show that G9 affected the expression of key genes of M. aeruginosa involved in photosynthesis, microcystin synthesis and cellular emergency responses. Further, the microcystin-LR content decreased gradually with G9 treatment. As the first reported Streptomyces sp. with algicidal (predation) activity requiring cell-to-cell contact with target prey, G9 is a good candidate for the exploration of additional cyanobacteria-bacteria interactions and the development of novel strategies to control CyanoHABs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.144489DOI Listing

Publication Analysis

Top Keywords

cell-to-cell contact
12
streptomyces globisporus
8
globisporus strain
8
microcystis aeruginosa
8
strain kills
4
kills microcystis
4
aeruginosa
4
aeruginosa cell-to-cell
4
cyanobacterial
4
contact cyanobacterial
4

Similar Publications

Extracellular matrix (ECM) is a network of macromolecules which has two forms - perineuronal nets (PNNs) and a diffuse ECM (dECM) - both influence brain development, synapse formation, neuroplasticity, CNS injury and progression of neurodegenerative diseases. ECM remodeling can influence extrasynaptic transmission, mediated by diffusion of neuroactive substances in the extracellular space (ECS). In this study we analyzed how disrupted PNNs and dECM influence brain diffusibility.

View Article and Find Full Text PDF

Spatial distributions of morphogens provide positional information in developing systems, but how the distributions are established and maintained remains an open problem. Transport by diffusion has been the traditional mechanism, but recent experimental work has shown that cells can also communicate by filopodia-like structures called cytonemes that make direct cell-to-cell contacts. Here we investigate the roles each may play individually in a complex tissue and how they can jointly establish a reliable spatial distribution of a morphogen.

View Article and Find Full Text PDF

Isolation of Viral Biofilms From HTLV-1 Chronically Infected T Cells and Integrity Analysis.

Bio Protoc

December 2024

Infectious Disease Research Institute of Montpellier (IRIM), UMR 9004 CNRS, University of Montpellier, Montpellier, France.

The human T-lymphotropic virus type-1 (HTLV-1) is an oncogenic retrovirus that predominantly spreads through cell-to-cell contact due to the limited infectivity of cell-free viruses. Among various modes of intercellular transmission, HTLV-1 biofilms emerge as adhesive structures, polarized at the cell surface, which encapsulate virions within a protective matrix. This biofilm is supposed to facilitate simultaneous virion delivery during infection.

View Article and Find Full Text PDF

Background: Interactions between microRNAs and RNA-binding proteins are crucial for microRNA-mediated gene regulation and sorting. Despite their significance, the molecular mechanisms governing these interactions remain underexplored, apart from sequence motifs identified on microRNAs. To date, only a limited number of microRNA-binding proteins have been confirmed, typically through labor-intensive experimental procedures.

View Article and Find Full Text PDF

The retinal pigment epithelium (RPE) is a monolayer of pigmented cells which plays an essential role in visual function via its interaction with the adjacent neural retina. Typically hexagonal in shape and arranged in a mosaic-like pattern, RPE cells maintain a relatively uniform size and arrangement in healthy eyes. Under stress or disease conditions such as age-related macular degeneration (AMD) and other heritable vision disorders, individual RPE cell dysmorphia has been observed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!