Antimicrobial resistance and genomic characterisation of Escherichia coli isolated from caged and non-caged retail table eggs in Western Australia.

Int J Food Microbiol

College of Science, Health, Education and Engineering, Murdoch University, Perth 6150, Australia; Department of Veterinary Medicine, College of Food and Agriculture, United Arab of Emirates University, Al Ain, P.O. Box 1555, United Arab Emirates. Electronic address:

Published: February 2021

Foodborne exposure to antimicrobial-resistant bacteria is a growing global health concern. Escherichia coli (E. coli) is well recognised as an indicator of food contamination with faecal materials. In the present study, we investigated the occurrence of E. coli in table eggs sold at retail supermarkets in Western Australia (WA). A total of 2172 visually clean and intact retail eggs were purchased between October 2017 and June 2018. A single carton containing a dozen eggs was considered as a single sample resulting a total of 181 samples. The shells and contents of each sample were separately pooled and tested using standard culture-based methods. Overall, generic E. coli was detected in 36 (19.8%; 95% confidence interval: 14.3; 26.4) of the 181 tested retail egg samples. We characterised 100 of the recovered E. coli isolates for their phenotypic antimicrobial resistance using minimum inhibitory concentration (MIC). A subset of E. coli isolates (n = 14) were selected on the basis of their MIC patterns, and were further characterised using whole genome sequencing (WGS). Fifty-seven (57%) of the recovered generic E. coli isolates (n = 100) were resistant to at least one of the 14 antimicrobials included in the MIC testing panel, of which 22 isolates (22%) showed multi-class resistance. The highest frequencies of non-susceptibility of E. coli isolated from WA retailed eggs were against tetracycline (49%) and ampicillin (36%). WGS revealed that tet(A) and bla genes were present in most of the isolates exhibiting phenotypic resistance to tetracycline and ampicillin, respectively. The majority (98%) of the characterised E. coli isolates were susceptible to ciprofloxacin and azithromycin, and none were resistant to the cephalosporin antimicrobials included in the MIC panel. Two isolates demonstrated reduced susceptibility to ciprofloxacin, with MICs of 0.125 and 0.25 mg/L, and WGS revealed the presence of plasmid mediated qnrs1 gene in both isolates. This is the first report on detection of non-wild-type resistance to fluoroquinolones in supermarket eggs in Australia; one of the two isolates was from a cage-laid eggs sample while the other was from a barn-laid retail eggs sample. Fluoroquinolones have never been permitted for use in poultry farms in Australia. Thus, the detection of low-level ciprofloxacin-resistant E. coli in the absence of local antimicrobial selection pressure at the Australian layer farms warrants further research on the potential role of the environment or human-related factors in the transmission of antimicrobial resistance. The results of this study add to the local and global understanding of antimicrobial resistance spread in foods of animal origin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2021.109054DOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
16
coli isolates
16
coli
11
isolates
9
escherichia coli
8
coli isolated
8
eggs
8
table eggs
8
western australia
8
retail eggs
8

Similar Publications

Introduction: Antimicrobial resistance (AMR) is a major public health challenge globally. This study aimed to analyze the antibacterial consumption (ATBc), and the incidence of multidrug-resistant organisms (MDRO), focusing on pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE group), in a Brazilian tertiary care hospital.

View Article and Find Full Text PDF

Streptococcus dysgalactiae (S. dysgalactiae ) is a common pathogen of humans and various animals. However, the phylogenetic position of animal S.

View Article and Find Full Text PDF

The genus Nocardia as a source of new antimicrobials.

NPJ Antimicrob Resist

January 2025

Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.

The genus Nocardia comprises over 130 species of soil-dwelling actinomycetes, many of which are opportunistic pathogens. Beyond their pathogenicity, Nocardia exhibits significant biosynthetic potential, producing an array of diverse antimicrobial secondary metabolites. This review highlights notable examples of these compounds and explores modern approaches to unlocking their untapped biosynthetic potential.

View Article and Find Full Text PDF

This study explores the effectiveness of various antifungal drugs in treating sporotrichosis caused by Sporothrix schenckii, especially in non-wild-type (non-WT) strains. The drugs tested include enilconazole (ENIL), isavuconazole (ISA), posaconazole (POS), terbinafine (TER), and itraconazole (ITC). The study involved in vitro and in vivo tests on 10 WT isolates and eight ITC non-WT isolates.

View Article and Find Full Text PDF

Regulatory elements controlling gene expression fine-tune bacterial responses to environmental cues, including antimicrobials, to optimize survival. Acinetobacter baumannii, a pathogen notorious for antimicrobial resistance, relies on efficient efflux systems. Though the role of efflux systems in antibiotic expulsion are well recognized, the regulatory mechanisms controlling their expression remain understudied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!